Chemical Foundations – Part 2

Reading:	Ch 4 sections $8 - 11$	Homework:	4.8 question 44*, 46, 52
	Ch 5 sections1 – 7		4.10 questions 66, 68, 70, 74, 76, 78
			4.11 questions 80, 84*
Downloads:	Periodic table		5.2 questions 10*, 12, 14
	Ion Chart		5.5 questions 24, 32, 34, 36*
			5.6 question 40
			5.7 questions 42* 50*

* = 'important' homework question

П

A More Detailed Look at the Periodic Table

<u>Fact 1</u>: The Periodic table is arranged left – right in order of increasing atomic number (Z) (i.e. each type of atom in the p. table has one more proton in its nucleus than its predecessor).

Example: Nitrogen is element number 7, while Oxygen, the next element, is atomic number 8.

Dmitri Mendeleev

<u>Question of historical interest</u>: Why is the periodic table not one continuous 'line' of elements, starting with Element #1 (H) and finishing with Element ~109?

In other words, why did early chemists, such as Mendeleev, start row (period) 2 with Lithium?

<u>Question</u>: Why is the periodic table so named? Hint: Look at the above P. Table's labels and color scheme

<u>Question</u>: If the classification of the elements is periodic, would you expect their physical and chemical trends to be so also?

Left side (metals)	Right side (non-metals)

Examples of Physical and Chemical trends within the Periodic table

Making Ions

<u>Questions</u>: What are ions? How are they made?

*ask me to tell you a very poor ion joke...

Atomic (*micro*) scale diagram of Ionization and *macro* scale crystal growth (slide)

In reality, electron(s) are EXCHANGED between atoms in order to become ionic compounds. I.E. what is lost by the metal (to become an M^{n+} cation) is gained by the non-metal (to become A^{n-} anion)

Making and Naming Ionic Formulas

List of Common atomic ions (must learn): See handout provided

Group I	Group VII
Group II	Group VI
Group III	Group V

<u>Naming atomic ions</u>: An atomic (+ve) cation has the same name as the metal it was formed from. An atomic (-ve) anion has the *same root* as the non-metal it was formed from, **but** and *-ide ending*. <u>Examples</u>:

Metal atom	Metal cation	Non-metal atom	Non-metal anion
Na		Cl	
Mg		0	

 Ionic formulas are made by combining ANY cation (+ve) with any anion (-ve).

 The order in ANY ionic formula is cation first, anion second, in both formula and name. i.e. (cation)(anion)

 Examples: NaCl (sodium chloride)

 LiF (
)

Image: Image of the systemImage o

<u>Task</u>: Construct and name as many ionic compounds as possible from the following ions:

 Li^+ Ca^{2+} Al^{3+} $Cl^ O^{2-}$ N^{3-}

List of Common molecular ions (must learn): See attached handout.

<u>Trick</u> – many *molecular ions* appear on the data sheet (see handout). Just keep using (homework) and/or looking (fridge) at the rest

Naming molecular ions:

There is ONLY one molecular cation $-(NH_4)^+$, ammonium.

Molecular anions with NO (or very few*) oxygen atoms in their structure have the *–ide* **ending**. <u>Examples</u>: [•]OH (hydrox*ide*)*, CN⁻ (cyan*ide*)

Molecular anions with 'lots' of oxygen atoms in their structure have the *-ate* ending. <u>Examples</u>: $(SO_4)^{2^-}$ (sulfate), $(NO_3)^-$ (nitrate), $(CO_3)^{2^-}$ (carbonate), $(PO_4)^{3^-}$ (phosphate)

Recall: Ionic formulas ALWAYS have a ZERO net charge – i.e.
the ionic charges in ANY formula cancel.This is true for molecular ions too – just treat the whole molecular ion
as if it were an atomic ion when making the formula. Name the
resulting compound in a similar way also.

<u>Task</u>: Construct and name as many ionic compounds as possible from the following ions:

 Li^+ Mg^{2+} $(NH_4)^+$ $(NO_3)^ (SO_4)^{2-}$ $(PO_4)^{3-}$

Naming Ionic compounds containing a cation of variable charge

<u>Question</u>: Can you see a potential problem with regard to writing the names and formulas of ionic compounds containing such cations?

Answer:

1

Ionic formulas featuring a variable charge (oxidation state) cation include the charge of the cation (written in Roman numerals) in the formula name. E.g.: $Cu_2O = Copper(I)$ oxide

<u>Task</u>: Complete the following table:

Name	Formula	Name	Formula
Iron (II) Sulfate		Copper (I) Phosphate	
	Cu(NO ₃) ₂		FeCl ₃

Acids and Bases

<u>Discussion</u>: Are acids and bases typically ionic or molecular compounds (recall your recent lab)? What is 'special' about their formulas?

<u>Naming acids and bases</u>: There are two ways of naming acids, and one way for bases:

1. Just use the standard approach for naming ionic compounds:

<u>Task</u>: Name the following acids and bases using standard ionic compound nomenclature:

HCl NaOH

H₂SO₄ Ca(OH)₂

HNO₃ Al(OH)₃

2. Using common nomenclature (chemical 'nicknames', must learn)

<u>Rules</u>: Acids with *-ide* anions (e.g. Chloride, Cl⁻) have a '*hydro*' prefix and an '*-ic*' ending, followed by 'acid'.

Example: HCl = *Hydro*chlor*ic* acid

Task: name the following acids:

HBr

HI

HCN

 H_2S

Acids with molecular '-*ate*' anions, such as nitrate, $(NO_3)^-$, and sulfate, $(SO_4)^{2-}$, simply become '-*ic* acids':

<u>Example</u>: $H(NO_3) = nitric$ acid

<u>Task</u>: name the following acids:

 H_2SO_4 H_3PO_4

 H_2CO_3

Question of the week - Group work

Understanding ionic formulas is 'all about' practicing writing and naming ionic formulas.

Recall:

Ionic formulas ALWAYS have a ZERO net charge – i.e. the ionic charges in ANY formula cancel.

Ionic compounds are named (cation name) (anion name)

The group work outlined below will cement your knowledge of ionic compounds...

<u>Task</u>: Complete tables 5.A (write formulas) and 5.B (write formulas) – both on (p 140). Work in groups for two or three, write you answers in the blank tables provided:

<u>Tip</u>: *This may take a while, but it is worth it*. If you can do this task the exam questions will seem easy.....

Table 5A: Make ionic formulas from ion formula pairs

Ions	Fe ²⁺	Al ³⁺	Na ⁺	Ca ²⁺	$\mathrm{NH_4}^+$	Fe ³⁺	Ni ²⁺	Hg_2^{2+}	Hg ²⁺
	7.60								
$CO_3^{2^2}$	FeCO ₃								
BrO ₃ -									
$C_2H_3O_2^-$									
OH									
HCO ₃									
PO ₄ ³⁻									
SO ₃ ²⁻									
ClO ₄ -									
SO4 ²⁻									
O ²⁻									
Cl									

T 11	E D	3 6 1	• •	C 1	C	•		•
Table	5B:	Make	10n1C	tormulas	trom	10n	name	pairs
				101110100				P **** 0

Ions	nitrate	sulfate	hydrogen sulfate	dihydrogen phosphate	oxide	chloride
calcium	Ca(NO ₃) ₂					
strontium						
ammonium						
aluminum						
iron(III)						
nickel(II)						
silver(I)						
gold(III)						
potassium						
mercury(II)						
barium						

Electrolytes

<u>Recall your lab</u>: What is an electrolyte? Why do sports drinks contain electrolytes?

<u>Task</u>: Using the slides and figure to help you, write a description of how solutions containing *strong electrolytes* are formed:

Most ionic compounds dissolve in water \Rightarrow they MUST dissociate ('break apart) to form an *electrolytic solution*. The dissolved ions are called *electrolytes*. See slide and figure.

Example: 'pasta water'

 $NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

(aq) is a state symbol which means 'dissolved' or 'with water'

П

Mobile (aq) ions conduct electricity \Rightarrow *all* electrolytic solutions conduct electricity.

The 'stronger' the electrolytic solution is, the more ions there are in solution and more electricity can be conducted

Ions in the Movies – Science fact or Science fiction?

<u>Discussion</u>: What makes for a good sci-fi movie? Why was *Star Wars* 'good' and *Battlestar Galactic* (released at the same time) 'bad'??

'Bad Guy' Brian Cox

An ion cannon, as seen in *The Empire Strikes Back* has a lot in common with a computer technician's static-guard wrist strap – electrical discharges can 'fry' sensitive electronics

Actual ion guns, used in surface science research and microchip manufacture.

Discussion: Would a commercially available ion gun be any use for 'home defense'??

"Ionic"

The following question was taken from your 2nd practice midterm:

<u>Question 2a (18 points)</u>: Write the formulas and names of nine ionic compounds that may be formed through combining the anions and cations ions listed immediately below.

 H^+ Cu^{2+} Al^{3+} $Cl^ SO_4^{2-}$ PO_4^{3-}

Name of Ionic Compound

Chart of the Common Ions (Learn)

+1 ions	+2	+3	-3 ions	-2 ions	-1 ions
	ions	ions			
H^+	Mg^{2+}	Al^{3+}	N ³⁻	O^{2-}	F
Li ⁺	Ca^{2+}	Fe ³⁺		S ²⁻	Cl
Na ⁺	Sr ²⁺	Cr ³⁺	PO_{4}^{3-}		Br⁻
\mathbf{K}^+	Ba ²⁺		(phosphate)	SO_4^{2-}	I
Au ⁺	Cu ²⁺			(sulf <i>ate</i>)	
Ag^+	Zn^{2+}			CO_{3}^{2}	⁻ OH (hydrox <i>ide</i>)
Cu ⁺	Fe ²⁺			(carbon <i>ate</i>)	NO_3^- (nitrate)
$\mathrm{NH_4}^+$	Pb^{2+}				CN^{-} (cyan <i>ide</i>)
(ammonium)					

Solubility rules (will be covered in later handouts):

None	Compounds	CO^{2-}	NILL + 0 TA
	containing	CO_3	$NH_4 \propto \text{group IA}$ cations
Ag^+ , Hg^{2+} , Pb^{2+}	C	PO ₄ ³⁻	NH ₄ ⁺ & group IA cations
Ag^{+}, Hg^{2+}, Pb^{2+}		OH	group IA cations Ca ²⁺ ,Sr ²⁺ , Ba ²⁺ & NH ₄ ⁺
Ag^{+}, Hg^{2+}, Pb^{2+} $Ba^{2+}, Hg^{2+}, Pb^{2+}$			
	Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ba ²⁺ , Hg ²⁺ ,Pb ²⁺	Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ba ²⁺ , Hg ²⁺ ,Pb ²⁺	Ag^+, Hg^{2+}, Pb^{2+} PO_4^{3-} Ag^+, Hg^{2+}, Pb^{2+} $OH^ Ag^+, Hg^{2+}, Pb^{2+}$ $Ba^{2+}, Hg^{2+}, Pb^{2+}$

Tricks:

Group # = ion charge for metal ions, e.g. Li (group 1) = +1

-(8 - group #) = ion charge for atomic non-metal ions, e.g. O = -(8-6) = -2

Formulas for most molecular ions appear on the solubility chart (supplied in data sheet).