Chemical Reactions – Part 1

	0
5.4 questions 20*,2	22*
6.1 questions 2, 4	
6.2 questions 8, 10	, 12*, 14, 16

* = 'important' homework question

11

Overview of Bonding Types

As we saw in previous work, **metals react with non-metals to form ionic compounds**:

<u>Example</u>: Na(s) + $Cl_2(g) \rightarrow NaCl(s)$ (recall slide)

(i.e. sodium metal + chlorine gas \rightarrow sodium chloride)

Ionic compounds are only formed between metals* (forming cations) and non-metals (forming anions)

<u>Recall</u>: Metals appear on the LEFT of the periodic table and nonmetals on the RIGHT. Thus mixing a 'leftie' with a 'rightie' results in the formation of an ionic compound (see above example).

<u>Discussion</u>: When two non-metals are mixed (both from the right of the periodic table) would you expect an ionic bonded product? Explain*.

* <u>Electronegativities</u>: see slide at end of handout

Atoms close to one another in the P. table (two 'righties') have
similar electronegativity values \Rightarrow they SHARE electrons and
form COVALENTLY bonded MOLECULAR productsExample: $C(s) + O_2(g) \rightarrow CO_2(g)$ (molecular compound)Atoms distant from to one another in the P. table ('leftie' and
'rightie') have dissimilar electronegativity values \Rightarrow they

<u>Example</u>: Na(s) + Cl₂(g) \rightarrow NaCl(s) (giant ionic compound)

EXCHAGE electrons and have IONIC bonded GIANT products

1A 8A dual properties н Metals 1 He 2A 6A 7A 3A 4A 5A в 2 Nonmetals and Noble gases С N F Li Be 0 Ne 3 Na AI Si Ρ S CI Mg Ar 8B 1B 2B 3B **4B** 5B 6B 7B ٦. Period Ni Sc Ti V Cr Fe Zn Ge As 4 K Ca Mn Co Cu Ga Se Br Kr 5 Sb Te Rb Y Pd Xe Sr Zr Nb Mo Tc Ru Rh Aq Cd In Sn ł Po 6 Cs Ba Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi At Rn 7 Fr Ra Ung Unp Unh Uns Uno Une Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 6 La Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 7 Ac

Metallic vs Non metallic Elements in the Periodic Table

1

ONLY a non-metal (top RHS) bonded to metal (LHS) make giant compounds with ionic bonds. E.g. NaCl, CaO

THESE MATERIALS ARE NAMED IN ACCORDANCE WITH THE 'IONIC' RULES DISCUSSED PREVIOUSLY

•O ONLY a non-metal bonded to another non-metal (top RHS p. table) make *molecular materials* with *covalent bonds*. E.g. CO, H₂O, SO₃

THESE MATERIALS ARE NAMED IN ACCORDANCE WITH THE (BELOW) 'MOLECULAR' RULES

<u>Task</u>: Based on the following materials' formulas, predict if each possesses *either* covalent *or* ionic bonding and if each has *either* a giant *or* molecular structure. <u>Hint</u>: recall the 'dividing line' in the p.table

Material	Bonding	Structure
Water (H ₂ O)		
Table salt (NaCl)		
Nitrogen gas		
Rust (Fe ₂ O ₃)		

<u>Question</u>: What important relationship do you see between bonding and structure?

Naming Molecular Elements and Compounds

<u>Task</u>: Write the formula of *and* name as many molecular elements and compounds as you can

Formula	Name	Formula	Name

<u>Discussion</u>: What relationships do you see between the names and formulas of molecular compounds?

H			
H -0			

Prefix Table

Number of atoms	Prefix*	Example
1		
2		
3		
4		
5		
6		

*Prefixes are dropped for the first *single* atom in a formula. E.g. CO_2 is named 'Carbon dioxide', <u>not</u> 'Mono Carbon dioxide'.

Tasks:

Name the Following:	Write formulas for the following:
NF ₃	Chlorine dioxide
Cl ₂ O	Chlorine pentafluoride
P_2O_5	Dihydrogen mono sulfide*

* If named using ionic nomenclature, also known as _____

Types of Chemical Reactions

Fact: There are FIVE general types of chemical reactions.

1. <u>Combination Reactions</u> - two or more types of material become one new material:

<u>Generic</u>: A + Z \rightarrow AZ

<u>Example</u>: $C(s) + O_2(g) \rightarrow CO_2(g)$

<u>Note</u>: All combustion (adding oxygen) reactions are classed as combination reactions.

2. <u>Decomposition Reactions</u> - a material becomes two or more new materials:

<u>Generic</u>: AZ \rightarrow A + Z

<u>Example</u>: CaCO₃(s) \rightarrow CaO(s) + CO₂(g)

<u>Note</u>: Decomposition reactions may be considered the reverse of combination reactions.

3. <u>Single Replacement ('Prom') reactions</u> - a more reactive material replaces a less reactive one in a compound:

Random internet prom pic.

<u>Generic</u>: A + BZ \rightarrow AZ + B

<u>Example</u>: $Sn(s) + 2HCl(aq) \rightarrow SnCl_2(aq) + H_2(g)$

<u>Note</u>: The material replaced (B or H^+ above) is said to be LESS reactive than it's replacement (A or Sn above).

4. <u>Double Replacement reactions</u> - the respective ionic partners of a pair of dissolved ionic compounds are swapped, most often resulting in the formation of solid product(s):

gerr!

<u>Generic</u>: AX + BZ \rightarrow AZ + BX

<u>Example</u>: AgNO₃(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO₃(aq)

<u>Note</u>: These types of reactions typically take place between dissolved ionic compounds, and typically result in one of the new materials forming a solid precipitate (ppt).

5. <u>Neutralization reactions</u> - very similar to double replacement, but ALWAYS between an acid and a base:

<u>Generic</u>: HA + MOH \rightarrow MA + HOH (acid + base \rightarrow salt + water, H₂O) <u>Example</u>: HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H₂O(1)

<u>Note</u>: These types of reactions are called neutralizations because acid (H^+) and basic (OH^-) ions react with each other to form water (H_2O) . Such reactions typically liberate large amounts of heat (highly exothermic). <u>Task</u>: Identify the following reactions (some of which you may remember from lab) as either: *combination, decomposition, single replacement, double replacement* or *neutralization*. Additionally, write the formula equivalent of each reaction below its word equation version.

 $sulfur(s) + oxygen gas \rightarrow sulfur dioxide gas$

magnesium carbonate(s) \rightarrow magnesium oxide(s) + carbon dioxide gas

zinc(s) + copper (II) nitrate sol^n . \rightarrow metallic copper + zinc nitrate sol^n .

silver nitrate(aq) + sod. chloride(aq) \rightarrow silver chloride(s) + sod. nitrate (aq)

sodium hydroxide solution + hydrochloric acid solution \rightarrow

Electronegativity Values

Electronegativity 'map' of the periodic table – this and other periodic trends will be covered in more detail later in the course