Gases

Reading:	Ch 13 sections 1 - 5	Homework:	13.1 questions 6, 8
			13.2 questions 18*, 20, 22, 24
			13.3 questions 30*, 34
			13.4 questions 42, 44
			13.5 questions 50*, 52*, 58, 60, 62*

* = 'important' homework question

Background

<u>Discussion</u>: What do we already know about gases? Many of the concepts to be covered are based on the interpretation of 'everyday' experiences.

Macroscopic View:

Microscopic View:

1 atm = 760 mmHg (Torr) = 101 kPa

- 1. Its VOLUME (in liters)
- 2. Its PRESSURE (most often in atm.)
- 3. Its TEMPERATURE (in Kelvin)
- 4. The number of MOLES (n) of gas present

Understanding gases is all about understanding the relationships between the VOLUME, PRESSURE, TEMPERATURE and # MOLES (n) of a gas sample.

The Gas Laws

Avogadro's Law:	Relationship between # MOLES of gas and VOLUME
	(P and T fixed)

<u>Everyday observation</u>: What takes up more space, 1 mole of gas or 2 moles of gas (assume constant temp. and pressure)?

$V \propto n \ (\# \ moles)$

At standard temperature (273 K) and pressure (1.0 atm.), 1 mole of ANY gas occupies 22.4 L.

1 mole = 22.4 L at STP

Examples:

1. What volume does 3.5 moles of $H_2(g)$ occupy at STP?

2. How many atoms of He are there in a 5.0 L party balloon at STP?

Boyles Law: Relationship between **PRESSURE** and **VOLUME** (n and T fixed)

<u>Everyday observation</u>: If you compress ('squeeze') the container a gas is in, does the gas pressure increase or decrease (assume fixed T and n).

Boyle's Law

$P \propto 1/V$ or PV = constant (table)

<u>Example</u>: A sample of gas has a pressure of 2.0 atm. If the volume of the container the gas sample is in is decreased by a factor of 10, what is the new pressure of the gas inside? Assume T and n constant.

<u>Charles' Law</u>: Relationship between: **TEMPERATURE** and **VOLUME** (n and P fixed) *or* **TEMPERATURE** and **PRESSURE** (n and V fixed)*

<u>Everyday observation</u>: Why does a hot air balloon rise? What time of day is best for ballooning?

Charles's Law

$\mathbf{V} \propto \mathbf{T}$

<u>Example</u>: A sample of gas occupies 12 L at 31°C . What volume does it occupy at 62°C ? Assume P and n are constant.

11

The three gas law equations can be combined to make a new equation (the IDEAL GAS LAW) that can be used to solve ANY 'static*' gas problem

Derivation of the ideal gas law

$\mathbf{PV} = \mathbf{nRT}$

Where:R = 0.08206 L atm /mol K if the atm. pressure unit is usedorR = 8.314 /mol K if the Pa or N/m² pressure unit is used

<u>Example</u>: Calcium carbonate decomposes when heated to give solid calcium oxide and carbon dioxide gas. If 250 mL of CO_2 (g) is collected at 31°C and 1.3 atm pressure, then how many moles of CO_2 (g) is collected?

Write down what you are given, *then* solve for the unknown quantity in 'static' problems

P = V = n = R = T = **Dynamic Problems:** changing P, V or T for a fixed number of moles of gas <u>Derivation of the 'Dynamic' (before and after) gas law</u>

<u>Example</u>: The pressure inside an aerosol can is 1.5 atm. at 25° C. What would the pressure inside the can be at 450° C? *Is there a moral to the story?*

$P_1 =$	$P_2 =$
$V_1 =$	$V_2 =$
$T_1 =$	$T_2 =$
(before)	(after)

"Air Bag"

The following question was taken from your 3rd practice midterm:

<u>Question 4 (25 points)</u>: Vehicle safety 'air' bags actually inflate with nitrogen gas during collisions. If a standard car's 'air' bag has a volume of 36.0 L and inflates to a pressure of 745 Torr at 15 °C, then:

A. How many moles of N_2 (g) are contained within the inflated 'air' bag described above?

B. If the car's air bag described above was instead inflated at – 20 °C (i.e. on a Chicago winter's day), to what pressure would the 'air' bag inflate?

Extra credit: Do you think the process described in (b) would be dangerous? Explain.