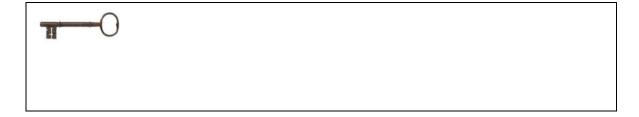
Using Large and Small Numbers – Scientific Notation

<u>Reading</u>: Ch. 2 sections 1 - 2 <u>Homework</u>: 2.1, questions 2, 4, 6, 8,12*,14*

Large Numbers

<u>Fact</u>: Chemical problem solving *most often* involves using either very large or very small numbers (e.g. counting the number of molecules in a drop of water, or quoting the mass of the water drop in kilograms)

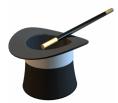

Recall: How many individual H_2O (1) molecules are there in a drop of water. Write this amount as a regular number:

Number H₂O (l) molecules in 1 drop water =

<u>Problem</u>: How do we represent and manipulate such numbers in an 'easier' way?

Answer:

Overview Example: Consider the statement "eight million people live in London". How can this quantity be best expressed numerically?



'Everyday':

^{* = &#}x27;important' homework question

'Better':

Just move the decimal point to the left until you get a single digit with decimals. The *power of ten* is the number of places the decimal point moved. Example:

$$3000 = 3 \times 10^{\text{(number decimal places to left moved)}} = 3 \times 10^3$$

Examples: Write the following quantities using *regular numbers* and *powers* of 10 (scientific notation). Try to do this without a calculator at first, then see the below tip for how to do this with your calculator's SCI button

Quantity	'Regular' quantity	'Power of ten' quantity (SCI)
One hundred miles		
One thousand students		
Five million people		
Twenty million dollars		
Five and a half billion people		

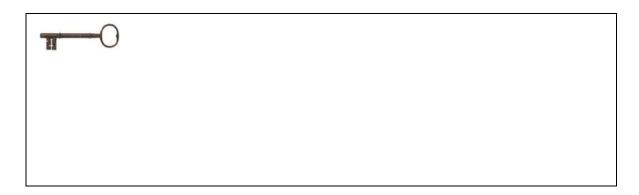
engineering (E	notation (SCI) is different than the powers of 10 used in NG). When converting to SCI powers of 10 from a 'real' he SCI button on your calculator, or put it in SCI mode and ey.
	r the number twelve million (12000000) into your calculator. key, and then repeat with the ENG key. What numbers do you
SCI:	ENG:
Wrap up: quo notation:	te the number of H ₂ O molecules in 1 drop water using SCI
1,000,000,000,00	00,000,000,000 molecules = molecules
	a: In chemistry we ALWAYS use scientific notation (SCI) g large (>100) or small (<0.1) numbers.
Small Numbe	rs
Question: How	can very small numbers be expressed in SCI notation?
	Just move the decimal point to the right until you get a single digit with decimals. The <i>negative</i> power of ten is the number of places the decimal point moved. Example: $0.00125 = 1.25 \times 10^{-\text{(number decimal places to right moved)}}$
	_

<u>Examples</u>: Convert the following *regular numbered quantities* to *powers of* 10 (scientific notation). Try to do this without a calculator at first, then check with your calculator.

'Regular' number (quantity)	'Power of ten' number (SCI) (quantity)
0.00015 grams	
0.125 %	
0.0458 mL	

Review: You now know	how to convert large	or small	'regular'	numbers
into SCI notation either	on paper or using your	: calculat	tor.	

Entering and Manipulating Large and Small Numbers: (using the EE or EXP button)


Enter the following SCI notation **numbers** into your calculator - *try* to use EE or EXP key, then press the = (in 'FLO' mode) to obtain the 'real' number equivalent:

'Power of ten' number (SCI)	Regular number
5 x 10 ⁻¹	
1.5×10^3	
3.56 10 ⁻³	
3.30 10	

Did you get the answers right? PLEASE LET ME KNOW IF YOU NEED ASSISTACE WITH THIS EXERCISE

$$3 \times 10^7 \div 6 \times 10^3 =$$

What answer did you get? What problems were encountered?

Using *only* the EE or EXP keys to express powers of 10 values, calculate the following. PLEASE LET ME KNOW IF YOU NEED ASSISTACE WITH THIS EXERCISE:

1.
$$(4 \times 10^{-9})(2 \times 10^4) =$$

2.
$$4 \times 10^{-9} \div 2 \times 10^4 =$$

3. See class examples

Making things even simpler – S.I. Prefixes

Certain powers of 10 can be replaced by a *symbol* known as a *decimal* (or S.I.) prefix

Use the slide shown or data from your book to complete the following table:

Prefix	Symbol	Meaning	Power of 10
Giga	G	1000000000 (billion)	
Mega	M	1000000 (million)	1×10^6
	k	1000 (thousand)	
Deci		0.1 (ten <i>th</i>)	
	c		
Milli			
	μ		1 x 10 ⁻⁶
Nano	n		

For decimal (S.I.) prefixes, just swap the appropriate "x 10"" part of the number for the equivalent prefix's symbol. Example:

 $1.25 \times 10^{-3} g = 1.25 \text{ mg (milligrams)}$

<u>Task</u>: Convert the following quantities to SCI notation and decimal prefix notation:

Quantity	With SCI notation	With Decimal Prefix
0.0000020 meters		
0.0015 grams		
3,000 dollars		
12 million people		

<u>Task</u>: Now convert the following quantities to SCI notation and 'regular' numbers:

Quantity	With SCI	As a 'real' number (quantity)
	notation	
2.5 mm		
5.2 km		
50 MW		
12 μm (microns)		

<u>Discussion</u>: Make a list of as many 'everyday' quantities as possible that use decimal prefixes (or similar related expressions):