Name:

Instructor: Mills

Chemistry 101: 3rd Midterm Examination Practice Questions

(see the class notes for answers to these questions)

Answer all four questions. Each question is worth 25 points. Please ensure you have all *four* pages of questions, as well as a formula sheet and a copy of the periodic table *before* starting work. For numerical answers, include the correct number of **significant figures** and appropriate **S.I. unit(s)**. For full credit you must....

Question	Score
1	
2	
3	
4	
Total	

SHOW ALL WORK

"Electron Addresses"

<u>Question 1</u> (25 points) Draw ground state orbital 'box' diagrams and write ground state electronic configurations for the following atoms and ions:

Carbon atom

Orbital 'box' diagram

Electronic Configuration

Oxide anion

Orbital 'box' diagram

Electronic Configuration

Sodium atom

Orbital 'box' diagram

Electronic Configuration

Hydrogen atom

Orbital 'box' diagram

Electronic Configuration

Magnesium *cation*

Orbital 'box' diagram

Electronic Configuration

"Lewis"

<u>Question 2a</u> (20 points) Draw Lewis structure(s) for the PO_4^{3-} ion, *include all possible resonance forms and include formal charge labels on one of your structures*. Assume a completely expanded octet for phosphorus.

<u>Question 2</u>b (5 points) Use VSEPR theory to determine the electronic and molecular geometry of the phosphate ion:

Electronic geometry:

Molecular geometry:

"Trends"

<u>Question 3a (15 points)</u> List the following properties of Li, K and Ne in order of: <u>Increasing atomic radius (smallest first)</u>

Increasing effective nuclear charge, Z_{eff}, (smallest first)

Decreasing 1st ionization energy (largest first)

<u>Question 3b (10 points)</u> State whether the following bonds are considered to be covalent, polar covalent or ionic:

Bond coordinate	<u>Type of bond</u> (covalent, polar covalent or ionic)
O=O	
О-Н	
Na-Cl	
K-F	
S-F	

"Raft"

<u>Question 4 (25 points)</u> The following reaction between calcium hydride and water is used to inflate life rafts and weather balloons:

 $CaH_2(s) + 2 H_2O(l) \rightarrow Ca(OH)_2(aq) + 2 H_2(g)$

If 47.0 grams of CaH₂(s) is completely reacted with an excess of water, then:

A. <u>How many moles of hydrogen gas will be produced?</u>

B. What volume (in L) would the hydrogen gas generated in part (a) occupy at 15.0°C and 725 Torr?

Extra Credit

Expect a descriptive style question taken from the reading.

Data sheet

Density = mass/volume	1 kg = 2.205 lb	$1 \text{ cm}^3 = 1 \text{ mL} = 1 \text{ x} 10^{-6} \text{ m}^3$
Density copper (Cu) = 8.95 gcm^{-3}	1 inch = 2.54 cm	1 mile = 1.6039 km
$1 \text{ a.m.u.} = 1.6606 \text{ x } 10^{-24} \text{ g}$	1 ft = 12 inches (exactly)	1 gallon = 3.786 L
Volume cylinder = $\pi r^2 h$	$1 dm^3 = 1L = 10^{-3}m^3$	R = 0.0821 Latm/molK
1 atm = 760 torr = 101 kPa		

Common Decimal Prefixer	5

Prefix	Symbol	Exponential Notation
Giga	G	10^{9}
Mega	Μ	10^{6}
Kilo	k	10^{3}
deci	d	10^{-1}
centi	с	10^{-2}
milli	m	10^{-3}
micro	μ	10-6
nano	n	10-9

Solubility rules:

Soluble Com	pounds	Exceptions	Insoluble Co	mpounds	s Exceptions
Compounds containing	NO ₃ ⁻	None	Compounds containing	CO_3^{2-}	NH ₄ ⁺ & group IA cations
C	Cl	Ag^{+}, Hg^{2+}, Pb^{2+}	C	PO ₄ ³⁻	$\rm NH_4^+$ & group IA cations
	Br	Ag^{+}, Hg^{2+}, Pb^{2+}		OH	group IA cations Ca ²⁺ ,Sr ²⁺ , Ba ²⁺ & NH ₄ ⁺
	I^{-} SO_4^{2-}	Ag^{+}, Hg^{2+}, Pb^{2+} $Ba^{2+}, Hg^{2+}, Pb^{2+}$			· · · ·