Introduction to Molecules and Ions

<u>Reading</u>: Ch 3 sections 1- 6 <u>Homework</u>: Chapter 3: 23, 25, 27, 29*, 31, 33*, 35*, 39, 43, 49*, 51*, 53

* = 'important' homework question

Molecules, Molecular Elements and Molecular Compounds

<u>Recap</u>: What is a molecule? What is a molecular compound? What is a molecular element?

Molecule:	
Molecular Element:	
Molecular Element:	
Molecular Compound:	

Molecules and their Chemical Formulas

There are two ways of describing the components (i.e. the number and type of atoms) found inside any molecule:
 <u>Molecular Formula</u>: the *actual number* and type of atoms in a compound, e.g. hydrogen peroxide = H₂O₂
 <u>Empirical Formula</u>: the *lowest whole number ratio* of each type of atom in a compound e.g. hydrogen peroxide = HO

Task: Complete the following table

Name	Molecular formula	Empirical formula
Hydrogen peroxide		
Dinitrogen tetroxide	N_2O_4	
Benzene	C_6H_6	
Butane	C_4H_{10}	
Tetraphosphorus decoxide	P_4O_{10}	

<u>Note</u>: Empirical formulas most often pertain to molecular / covalent compounds, as ionic compounds' formulas are typically in their lowest ratio to begin with (this will be discussed further below)

Picturing Molecules – Structural Formulas

⁴ A structural formula is simply a more detailed version of the molecule's corresponding molecular formula.

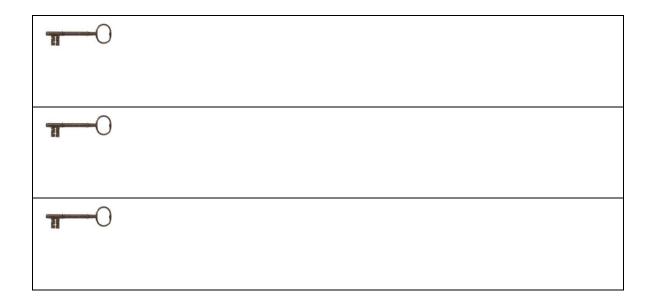
The major difference is that structural formulas also indicate the spatial relationship, and bonding, between atoms in a molecule

<u>Eg</u> :	Name and Molecular Formula	Electron density map of the 'real' molecule	Structural Formula
	Water (H ₂ O)		

<u>Task</u>: Using the electron density maps as a guide, complete the following table

Key

Name and Molecular Formula	Electron density map of the <u>'real' molecule</u>	Structural Formula
Carbon Dioxide (CO ₂)		
Methane (CH ₄)		
Ethane (C ₂ H ₆)		
Ammonia (NH ₃)		


Naming Molecular Elements and Compounds

<u>Task</u>: Write the formula of *and* name as many molecular elements and compounds as you can

Formula	Name	Formula	Name

<u>Discussion</u>: What relationships do you see between the names and formulas of molecular compounds?

Prefix Table

Number of atoms	Prefix*	Example
1		
2		
3		
4		
5		
6		

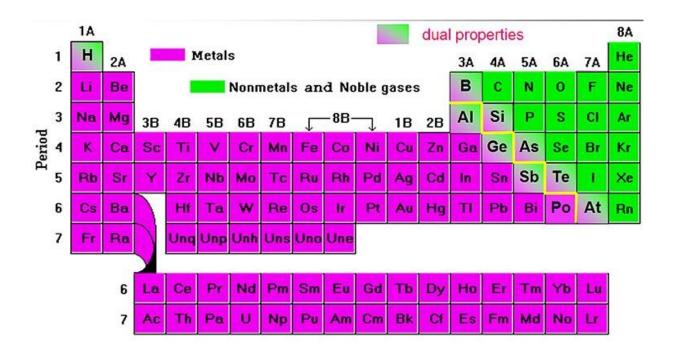
*Prefixes are dropped for the first *single* atom in a formula. E.g. CO₂ is named 'Carbon dioxide', <u>not</u> 'Mono Carbon dioxide'.

Tasks:

Name the Following:	Write formulas for the following:
NF ₃	Chlorine dioxide
Cl ₂ O	Chlorine pentafluoride
P ₂ O ₅	Dihydrogen monosulfide*

* If named using ionic nomenclature, also known as _____

Location, Location, Location!

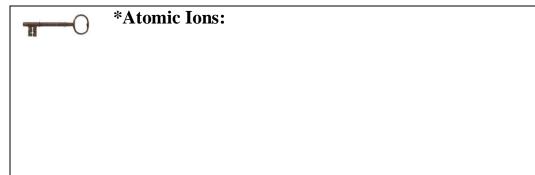

1

1

ONLY a non-metal bonded to another non-metal (top RHS p. table) make *molecular materials* with *covalent bonds*. E.g. CO, H₂O, SO₃

THESE MATERIALS ARE NAMED IN ACCORDANCE WITH THE ABOVE 'MOLECULAR' RULES

Metallic vs Non metallic Elements in the Periodic Table


) ONLY a non-metal (top RHS) bonded to metal (LHS) make *giant* compounds with ionic bonds. E.g. NaCl, CaO

THESE MATERIALS ARE NAMED IN ACCORDANCE WITH THE 'IONIC' RULES DISCUSSED IMMEDIATELY BELOW

Ions and Ionic Compounds

Questions: What are ions? How are they made?

H -O	Ion:

* Ask me to tell you a very poor ion joke.....

Atomic (*micro*) scale diagram of Ionization and *macro* scale crystal growth (slide)

In reality, electron(s) are EXCHANGED between atoms in order to become ionic compounds. I.E. what is lost by the metal (to become an M^{n+} cation) is gained by the non-metal (to become A^{n-} anion)

Making and Naming Ionic Formulas

List of Common atomic ions (must learn): See appendixes

Group I	Group VII
Group II	Group VI
Group III	Group V

<u>Naming atomic ions</u>: An atomic (+ve) cation has the same name as the metal it was formed from. An atomic (-ve) anion has the *same root* as the non-metal it was formed from, **but** and *-ide ending*. <u>Examples</u>:

Metal atom	Metal cation	Non-metal atom	Non-metal anion
Na		Cl	
Mg		0	

H O	Ionic formulas are made by combinination (-ve).	ng ANY cation (+ve) with any
	The order in ANY ionic formula is car formula and name. i.e. (cation)(anior	
	Examples: NaCl (sodium chloride)	
	LiF ()

Ionic formulas ALWAYS have a ZERO net charge – i.e. the (+) and (-) ionic charges in ANY formula cancel.

If the above rule is followed, the ionic compound must exist and is probably sitting on a shelf in the chemistry stock room!

<u>Task</u>: Construct and name as many ionic compounds as possible from the following ions:

 Li^+ Ca^{2+} Al^{3+} $Cl^ O^{2-}$ N^{3-}

List of Common molecular ions (must learn): See attached handout.

<u>Trick</u> – many *molecular ions* appear on the data sheet (see handout). Just keep using (homework) and/or looking (fridge) at the rest

Naming molecular ions:

There is ONLY one molecular cation $-(NH_4)^+$, ammonium.

Molecular anions with NO (or very few*) oxygen atoms in their structure have the *–ide* **ending**. <u>Examples</u>: ⁻OH (hydrox*ide*)*, CN⁻ (cyan*ide*)

Molecular anions with 'lots' of oxygen atoms in their structure have the *-ate* ending. <u>Examples</u>: $(SO_4)^{2-}$ (sulfate), $(NO_3)^-$ (nitrate), $(CO_3)^{2-}$ (carbonate), $(PO_4)^{3-}$ (phosphate)

Recall: Ionic formulas ALWAYS have a ZERO net charge – i.e. the ionic charges in ANY formula cancel.
 This is true for molecular ions too – just treat the whole molecular ion as if it were an atomic ion when making the formula. Name the resulting compound in a similar way also.

<u>Task</u>: Construct and name as many ionic compounds as possible from the following ions:

Li⁺ Mg²⁺ $(NH_4)^+$ $(NO_3)^ (SO_4)^{2-}$ $(PO_4)^{3-}$

Naming Ionic compounds containing a cation of variable charge

Metallic elements from the center of the periodic table (the *transition series*, between groups II and III) can form atomic ions with a range of +ve charges. <u>Examples</u>: Fe^{2+} and Fe^{3+} , Cu^+ and Cu^{2+} .

<u>Question</u>: Can you see a potential problem with regard to writing the names and formulas of ionic compounds containing such cations?

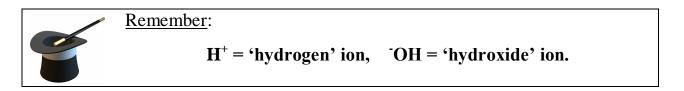
Answer:

11

Ionic formulas featuring a variable charge (oxidation state) cation include the charge of the cation (written in Roman numerals) in the formula name. E.g.: $Cu_2O = Copper(I)$ oxide

Task: Complete the following table:

Name	<u>Formula</u>	Name	<u>Formula</u>
Iron (II) Sulfate		Copper (I) Phosphate	
	Cu(NO ₃) ₂		FeCl ₃


Acids and bases

<u>Discussion</u>: Are acids and bases typically ionic or molecular compounds (trick question!)? What is 'special' about them and their formulas?

<u>Naming acids and bases</u>: There are two ways of naming acids, and one way for bases:

1. Just use the standard approach for naming ionic compounds:

<u>Task</u>: Name the following acids and bases using standard ionic compound nomenclature:

```
HCl NaOH
```

H₂SO₄ Ca(OH)₂

HNO₃ Al(OH)₃

2. Using common nomenclature (chemical 'nicknames', must learn too)

<u>Rules</u>: Acids with *-ide* anions (e.g. Chloride, CI) have a '*hydro*' prefix and an '*-ic*' ending, followed by 'acid'.

<u>Example</u>: HCl = Hydrochloric acid

<u>Task</u>: name the following acids:

HBr

HI

 H_2S

HCN

Acids with molecular '*-ate*' anions, such as nitrate, $(NO_3)^-$, and sulfate, $(SO_4)^{2-}$, simply become '*-ic* acids':

Example: H(NO₃) = nitr*ic* acid

<u>Task</u>: name the following acids:

 H_2SO_4

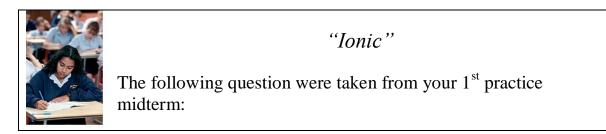
 H_3PO_4

 H_2CO_3

Ions in the Movies – Science fact or Science fiction?

<u>Discussion</u>: What makes for a good sci-fi movie? Why was *Star Wars* 'good' and *Battlestar Galactic* (released at the same time) 'bad'??

'Bad Guy' Brian Cox



An ion cannon, as seen in *The Empire Strikes Back* has a lot in common with a computer technician's static-guard wrist strap – electrical discharges can 'fry' sensitive electronics

Actual ion guns, used in surface science research and microchip manufacture.

<u>Discussion</u>: Would a commercially available ion gun be any use for 'home defense'??

Write the formulas and names of nine ionic compounds that may be formed through combining the anions and cations ions listed immediately below.

$$H^+$$
 Cu^{2+} Al^{3+} $Cl^ SO_4^{2-}$ PO_4^{3-}

Ionic Formula	Name of Ionic Compound			

Appendix: Table of Common Ions (Tro)

TABLE 3.2Metals Whose Charge Is Invariant from One Compound to Another				
Metal	lon	Name	Group Number	
Li	Li ⁺	Lithium	1A	
Na	Na ⁺	Sodium	1A	
Κ	K^+	Potassium	1A	
Rb	Rb ⁺	Rubidium	1A	
Cs	Cs ⁺	Cesium	1A	
Be	Be ²⁺	Beryllium	2A	
Mg	Mg ²⁺	Magnesium	2A	
Ca	Ca ²⁺	Calcium	2A	
Sr	Sr ²⁺	Strontium	2A	
Ba	Ba ²⁺	Barium	2A	
Al	Al ³⁺	Aluminum	3A	
Zn	Zn^{2+}	Zinc	*	
Sc	Sc ³⁺	Scandium	*	
Ag**	Ag^+	Silver	*	

TABLE 3.3 Some Common Anions				
Nonmetal	Symbol for lon	Base Name	Anion Name	
Fluorine	F^{-}	fluor	Fluoride	
Chlorine	Cl^{-}	chlor	Chloride	
Bromine	Br ⁻	brom	Bromide	
Iodine	Ι_	iod	Iodide	
Oxygen	0^{2-}	OX	Oxide	
Sulfur	S ²⁻	sulf	Sulfide	
Nitrogen	N ³⁻	nitr	Nitride	
Phosphorus	P ³⁻	phosph	Phosphide	

TABLE 3.4 Some Metals That Form Cations with Different Charges				
Metal	lon	Name	Older Name [*]	
Chromium	Cr ²⁺	Chromium(II)	Chromous	
	Cr ³⁺	Chromium <mark>(III)</mark>	Chromic	
Iron	Fe ²⁺	Iron <mark>(II)</mark>	Ferrous	
	Fe ³⁺	Iron <mark>(III)</mark>	Ferric	
Cobalt	Co ²⁺	Cobalt(II)	Cobaltous	
	Co ³⁺	Cobalt <mark>(III)</mark>	Cobaltic	
Copper	Cu ⁺	Copper(I)	Cuprous	
	Cu ²⁺	Copper(II)	Cupr <mark>ic</mark>	
Tin	Sn ²⁺	Tin <mark>(II)</mark>	Stannous	
	Sn ⁴⁺	Tin <mark>(IV)</mark>	Stannic	
Mercury	Hg_2^{2+}	Mercury <mark>(I)</mark>	Mercurous	
	Hg ²⁺	Mercury <mark>(II)</mark>	Mercuric	
Lead	Pb ²⁺	Lead <mark>(II)</mark>	Plumbous	
	Pb ⁴⁺	Lead(IV)	Plumbic	

TABLE 3.5 Some Common Polyatomic Ions					
Name	Formula	Name	Formula		
Acetate	C ₂ H ₃ O ₂ ⁻	Hypochlorite	ClO ⁻		
Carbonate	CO_3^{2-}	Chlorite	ClO_2^-		
Hydrogen carbonate (or bicarbonate)	HCO ₃ ⁻	Chlorate	ClO ₃ ⁻		
Hydroxide	OH^{-}	Perchlorate	ClO_4^-		
Nitrite	NO_2^-	Permanganate	MnO_4^{-}		
Nitrate	NO_3^-	Sulfite	SO3 ²⁻		
Chromate	CrO ₄ ²⁻	Hydrogen sulfite (or bisulfite)	HSO ₃ ⁻		
Dichromate	$Cr_2O_7^{2-}$	Sulfate	SO_4^{2-}		
Phosphate	PO4 ³⁻	Hydrogen sulfate (or bisulfate)	HSO_4^-		
Hydrogen phosphate	HPO_4^{2-}	Cyanide	CN^{-}		
Dihydrogen phosphate	$H_2PO_4^-$	Peroxide	0_2^{2-}		
Ammonium	NH_4^+				

+1 ions	+2	+3	-3 ions	-2 ions	-1 ions
	ions	ions			
H^+	$\frac{\text{Mg}^{2+}}{\text{Ca}^{2+}}$	Al^{3+}	N ³⁻	O ²⁻	F
Li ⁺	Ca ²⁺	Fe^{3+}		S ²⁻	Cl
Na ⁺	Sr^{2+}	Cr^{3+}	PO_4^{3-}		Br
\mathbf{K}^+	Ba ²⁺		(phosphate)	SO_4^{2-}	Γ
Au^+	Cu^{2+}			(sulfate)	
Ag^+ Cu^+	Zn^{2+}			CO_{3}^{2}	⁻ OH (hydrox <i>ide</i>)
Cu^+	Fe^{2+}			(carbon <i>ate</i>)	NO_3^- (nitrate)
$\mathrm{NH_4}^+$	Pb^{2+}				CN ⁻ (cyan <i>ide</i>)
(ammonium)					

Chart of the Common Ions (Learn)

Solubility rules (will be supplied):

Soluble Compounds Exceptions		Insol Compo		Exceptions	
Compounds containing	NO ₃ ⁻ Cl ⁻	None Ag ⁺ , Hg ²⁺ , Pb ²⁺ Ag ⁺ , Hg ²⁺ , Pb ²⁺	Compounds containing	CO_3^{2-} PO_4^{3-}	${ m NH_4^+}$ & group IA cations ${ m NH_4^+}$ & group IA cations
	Br ⁻ I ⁻ SO4 ²⁻	Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ag ⁺ , Hg ²⁺ ,Pb ²⁺ Ba ²⁺ , Hg ²⁺ ,Pb ²⁺		OH	group IA cations Ca ²⁺ ,Sr ²⁺ , Ba ²⁺ & NH ₄ ⁺

Tricks:

Group # = ion charge for metal ions, e.g. Li (group 1) = +1

-(8 - group #) = ion charge for atomic non-metal ions, e.g. O = -(8-6) = -2

Formulas for most molecular ions appear on the solubility chart (supplied in data sheet).