# Acid - Base Equilibria 1

| Reading: | Ch 15 sections $1 - 7$ | Homework: | Chapter 15: 33, 35, 39, 45, 47, 49*, 51, |
|----------|------------------------|-----------|------------------------------------------|
|          |                        |           | 53, 55, 57, 79*, 81                      |

\* = 'important' homework question



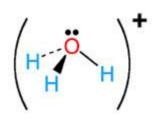
Background and Discussion: What is an acid? What is a base? Give some common examples.

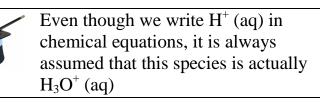


• There are three models used to describe acid and base behavior: Arrhenius, Brønsted – Lowery, and Lewis

Note: Lewis Acids and Bases: will be discussed later in the course

Arrhenius Acids and Bases:


<u>Arrhenius Acid</u>: "A substance when dissolved in water increases the  $[H^+]$ " - this is a generic definition, true for all three models

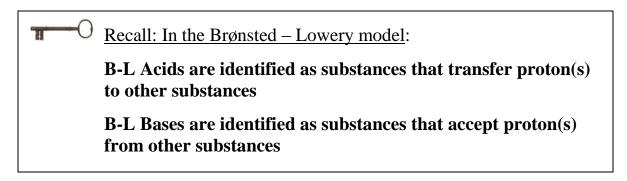

Example:

Arrhenius Base:

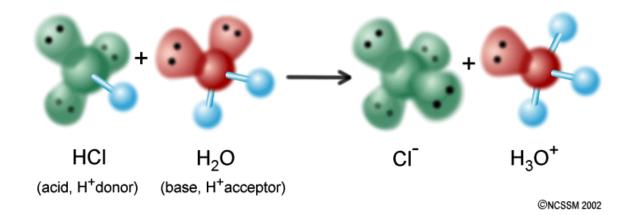
Example:

••• **Naked'**  $H^+$  (aq) ions do not really exist (even though we often write them in chemical equations).  $H^+$  ions 'piggyback' on  $H_2O$ molecules – the resulting  $H_3O^+$  (aq) (*hydronium*) ion is what is actually responsible for acidic behavior






Molecular representation of the hydronium ion




<u>Aside</u>: Can a completely 'dry' acid cause a chemical burn (like HCl(g)) or just taste acidic (like vinegar)? <u>Hint</u>: think about sour candies – what is the 'sharp' tasting powdered coating made of?

#### The Brønsted – Lowery Proton Transfer model



Example: HCl (aq) as a Brønsted – Lowery acid



Task: Identify the B-L acids and B-L bases in the following reactions:

 $NH_4^+(aq) + CN^-(aq) \rightarrow HCN(aq) + NH_3(aq)$ 

 $HSO_4^-(aq) + HCO_3^-(aq) \rightarrow SO_4^{2-}(aq) + H_2CO_3(aq)$ 

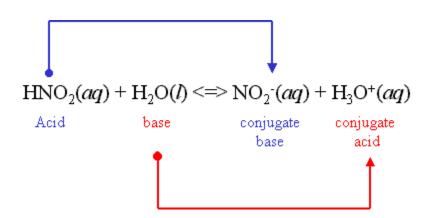
 $NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$ 

## **Conjugate Acid – Base Pairs**

In an acid base equilibrium, the reacting acid most protonate (by definition) a base. The (now) de-protonated acid is now known as a *conjugate base* and appears on the products side of the equation.

Similarly, **the reactant base that accepts proton(s) becomes a** *conjugate acid* on the reactants side of the equation.

Generic Example:


Forward reaction: HX (aq) and  $X^{-}$  (aq) are an acid / conjugate base pair

 $H_2O$  (l) and  $H_3O^+$  (aq) are a base / conjugate acid pair



Conjugate acids and bases are so named because they act as acids and bases, respectively, *for the reverse reaction* 

Example:



<u>Task</u>: Identify the acid / conjugate base and base / conjugate acid pair for above REVERSE reaction

Workshop: Complete the following assignments:

1. Identify acid / conjugate base and base / conjugate acid pairs for the following forward reactions:

$$HNO_3(aq) + H_2O(l) \Leftrightarrow NO_3(aq) + H_3O(aq)$$

 $NH_3(aq) + H_2O(l) \iff NH_4^+(aq) + OH^-(aq)$ 

2. What are the conjugate bases of:

 $H_2PO_4^ H_2S$  $H_2SO_3^ HCO_3^-$ 

3. What are the conjugate acids of:

 $H_2PO_4^ SO_4^{-2-}$  $CN^ HCO_3^-$ 

#### Amphoteric Behavior

<u>Question</u>: Did you notice anything 'interesting' with regarding the behavior of the poly-protic acids in the previous examples?

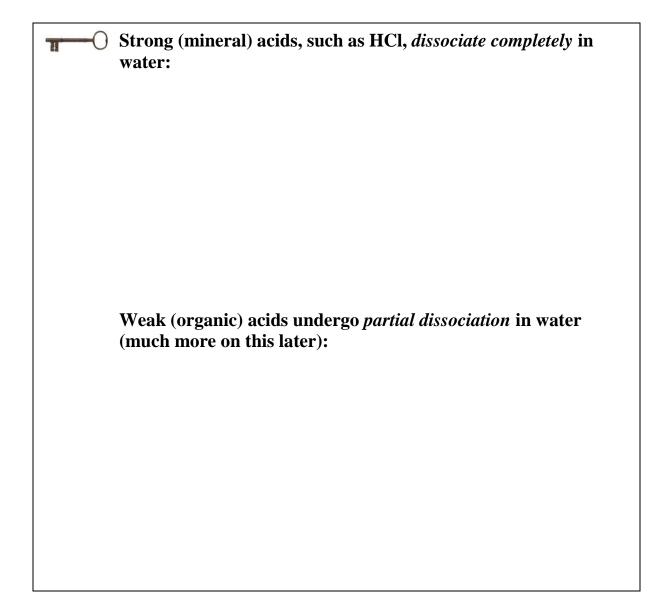
Observation:

<u>Answer</u>: Dihydrogen phosphate is *amphoteric*:

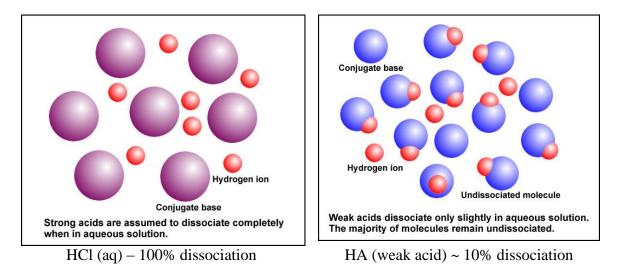
Amphoteric: "capable as behaving as *either* an acid *or* a base"

### Tasks:

a. Write and equation for the reaction of  $H_2PO_4^-$  with water in which it acts as an acid


b. Write and equation for the reaction of  $H_2PO_4^-$  with water in which it acts as a base

c. Write a single equilibrium equation that represents what happens when dihydrogen phosphate is dissolved in water


## The Relative Strengths of Acids and Bases



Back to the fish 'n chips: Why can 0.1 M acetic acid (vinegar) be sprinkled on fish 'n chips, while it is *unadvised* to sprinkle 0.1 M HCl on this Scottish staple?



# Microscopic View

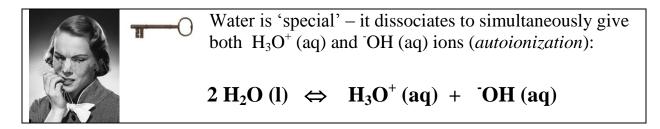


## Observations from the slide - Conjugate Acid and Base Pairs

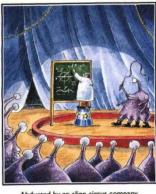
1.

2.

|                          | Acid                   |                                   |                                                                                                     |                                 | Base                     |                          |
|--------------------------|------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|--------------------------|
|                          | Perchlorie acid        | HCIO <sub>4</sub> )               |                                                                                                     | ClO <sub>4</sub>                | Perchlorate ion          |                          |
| Increasing acid strength | Sulfuric acid          | H <sub>2</sub> SO <sub>4</sub>    | Stronger acids than $H_3O^+$ ; form $H_3O^+$ in 100% yield in $H_2O$ .                              | HSO <sub>4</sub>                | Hydrogen sulfate ion     | Increasing base strength |
|                          | Hydrogen iodide        | HI                                |                                                                                                     | 1                               | Iodide ion               |                          |
|                          | Hydrogen bromide       | HBr                               |                                                                                                     | Br                              | Bromide ion              |                          |
|                          | Hydrogen chloride      | HCI                               |                                                                                                     | Cl                              | Chloride ion             |                          |
|                          | Nitrie acid            | HNO <sub>3</sub>                  |                                                                                                     | NO <sub>3</sub>                 | Nitrate ion              |                          |
|                          | Hydronium ion          | $H_3O^+$                          |                                                                                                     | H <sub>2</sub> O                | Water                    |                          |
|                          | Hydrogen sulfate ion   | HSO <sub>4</sub>                  |                                                                                                     | $SO_4^2$                        | Sulfate ion              |                          |
|                          | Phosphoric acid        | H <sub>3</sub> PO <sub>4</sub>    |                                                                                                     | H <sub>2</sub> PO <sub>4</sub>  | Dihydrogen phosphate ion |                          |
|                          | Hydrogen fluoride      | HF                                |                                                                                                     | F                               | Fluoride ion             | ES!                      |
|                          | Nitrous acid           | HNO <sub>2</sub>                  |                                                                                                     | NO <sub>2</sub>                 | Nitrite ion              | Dig .                    |
|                          | Acetic acid            | CH <sub>3</sub> CO <sub>2</sub> H |                                                                                                     | CH <sub>3</sub> CO <sub>2</sub> | Acetate ion              | ba                       |
|                          | Carbonic acid          | $H_2CO_3$                         |                                                                                                     | HCO <sub>3</sub>                | Hydrogen carbonate ion   | e                        |
|                          | Hydrogen sulfide       | H <sub>2</sub> S                  |                                                                                                     | HS                              | Hydrogen sulfide ion     | stre                     |
|                          | Ammonium ion           | NH4                               |                                                                                                     | NH <sub>3</sub>                 | Ammonia                  | 3H                       |
|                          | Hydrogen cyanide       | HCN                               |                                                                                                     | CN                              | Cyanide ion              | F                        |
|                          | Hydrogen carbonate ion | HCO <sub>3</sub> <sup>+</sup>     |                                                                                                     | CO3                             | Carbonate ion            |                          |
|                          | Water                  | H <sub>2</sub> O                  |                                                                                                     | , OHT                           | Hydroxide ion            |                          |
|                          | Hydrogen sulfide ion   | HS                                | Stronger bases than<br>OH <sup>+</sup> ; form OH <sup>+</sup> in<br>100% yield in H <sub>2</sub> O. | S <sup>2</sup>                  | Sulfide ion              |                          |
|                          | Ethanol                | C <sub>2</sub> H <sub>5</sub> OH  |                                                                                                     | C <sub>2</sub> H <sub>5</sub> O | Ethoxide ion             |                          |
|                          | Ammonia                | NH <sub>3</sub>                   |                                                                                                     | NH2                             | Amide ion                |                          |
|                          | Hydrogen               | H <sub>2</sub>                    |                                                                                                     | H                               | Hydride ion              |                          |
|                          | Methane                | CH <sub>4</sub>                   |                                                                                                     | CH <sub>3</sub>                 | Methide ion              |                          |


<u>Task</u>: Use the slide/handout to predict if the following equilibria lie to the left or to the right:

Recall that protonation favors transfer from stronger acid (or weaker base) to stronger base (or weaker acid)


1. 
$$PO_4^{3-}$$
 +  $H_2O(1) \Leftrightarrow HPO_4^{2-}$  +  $^{-}OH(aq)$ 

2. 
$$NH_4^+(aq) + OH^-(aq) \iff NH_3(aq) + H_2O(l)$$

#### The Autoionization of Water



Task: Write an equilibrium (K) expression for the autoionization of water



Abducted by an alien circus company, Professor Doyle is forced to write calculus equations in center ring.

Ш

Derivation of K<sub>w</sub> and Other Useful Math

) The value of  $K_w$  is constant for **ANY** aqueous solution, regardless of how much acid or base is added from external sources. I.E., for any aqueous solution:

 $K_w = 1.0 \times 10^{-14} = [H^+][^{-}OH] @ 25^{\circ}C$ 

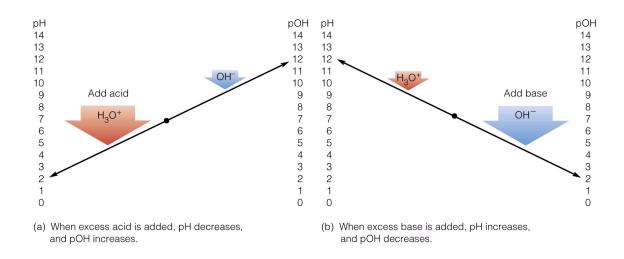
## Applications of K<sub>w</sub> - pH, pOH and pK<sub>w</sub>

## **Discussion Questions**:

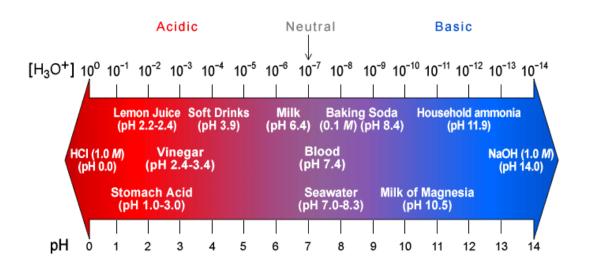
1. If  $1.0 \ge 10^{-14} = [H^+][^{-}OH]$ , what is the concentration of both  $H^+$  (aq) and  $OH^-$  (aq) in *any* neutral solution. <u>Hint</u>: What must always true in terms of the concentrations of  $[H^+]$  and  $[^{-}OH]$  for any neutral solution?

2. What is pH, what is it a measure of? What is the relationship between pH and  $[H^+]$  for a neutral solution?




*p* is simply a mathematical function that means: *"take the -log*<sub>10</sub> *of the quantity of interest (such as* [H<sup>+</sup>])*"* 

Further expressions:


pOH =

 $pK_w =$ 

There is a *synergic* relationship between pH and pOH (or  $[H^+]$  and  $[^-OH]$ ) for any solution. I.E., as one rises  $\uparrow$ , one falls  $\downarrow$ :



pH Scale



©NCSSM 2002

See the additional slide also

<u>Questions</u>: Determine the pH and pOH of the following strong acid and strong base solutions (assume 100% dissociation in each case):

0.055 M HCl (aq)

0.008 M NaOH (aq)

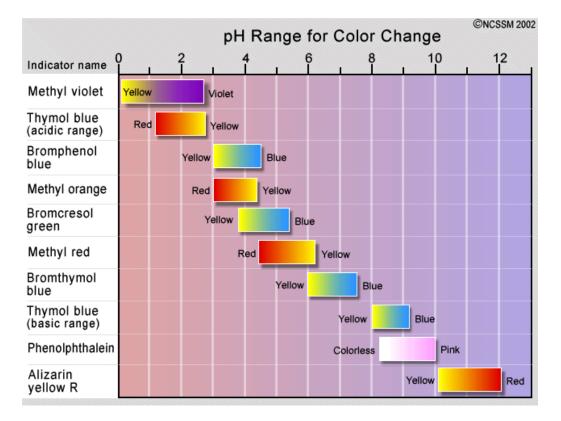
 $0.055 \text{ M H}_2\text{SO}_4 (aq)$ 

0.008 M Ca(OH)<sub>2</sub> (aq)

Workshop: Work in small groups to solve the following problems:

Calculate pH, pOH and [<sup>-</sup>OH] for each of the following solutions. State if each solution is acidic, basic or neutral:

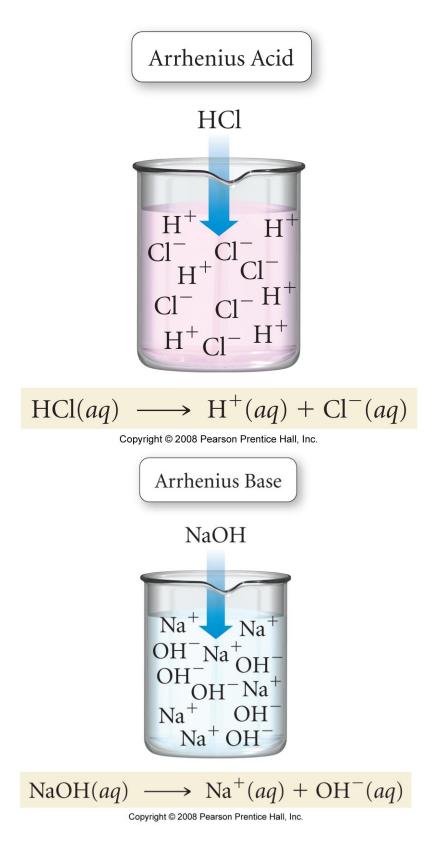
1.  $[H^+] = 0.0041 \text{ M}$ 

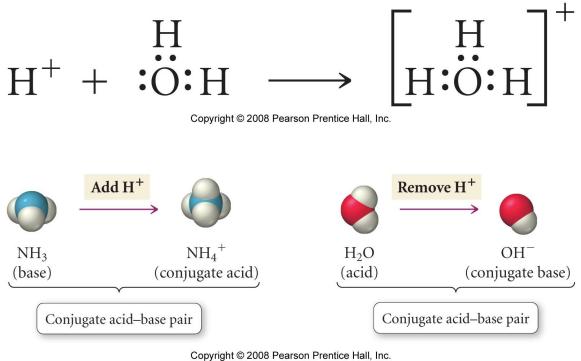

2.  $[H^+] = 3.5 \times 10^{-9} M$ 

3. A solution where  $[H^+]$  is 10 times greater than  $[^{-}OH]$ 

4. If you finish the above, try some homework problems

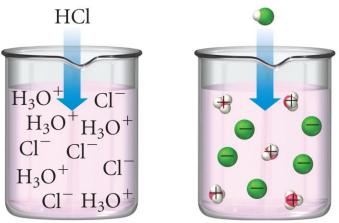
| <b>n</b> -0                                                                                                                                           | <u>Recall your Lab</u> : Acid base indicators are simply chemicals that undergo a color change when exposed to a specific $[H^+]$ or $[^-OH]$ . |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Thus, acid-base indicators work over a specific pH range.<br>Indicators are selected based on their observed colors over spectrum / desired pH ranges |                                                                                                                                                 |


## Table of common Indicators

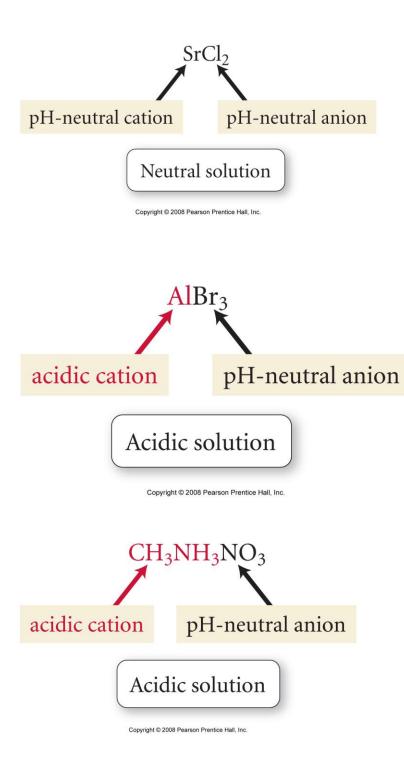


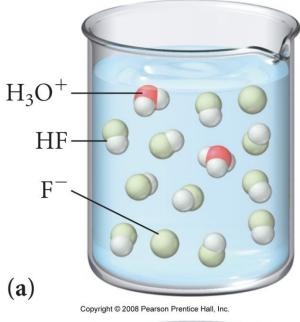

<u>Questions</u>: Which indicator would be best for detecting a titration endpoint that occurs at pH 4.0? What color change would be observed if the acidic sample was titrated with NaOH (aq)?

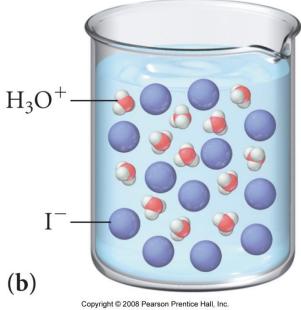
Why is indicator choice less important for a strong acid / strong base titration??

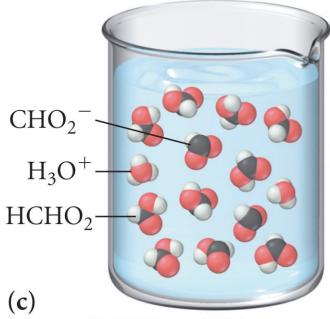

## Appendix



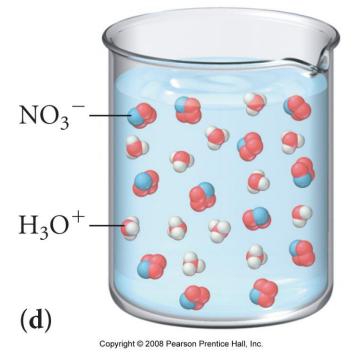


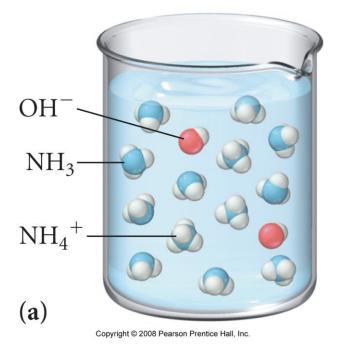


A Strong Acid

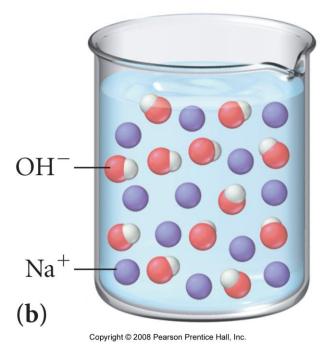

When HCl dissolves in water, it ionizes completely.

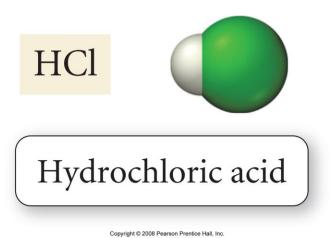



Copyright © 2008 Pearson Prentice Hall, Inc.



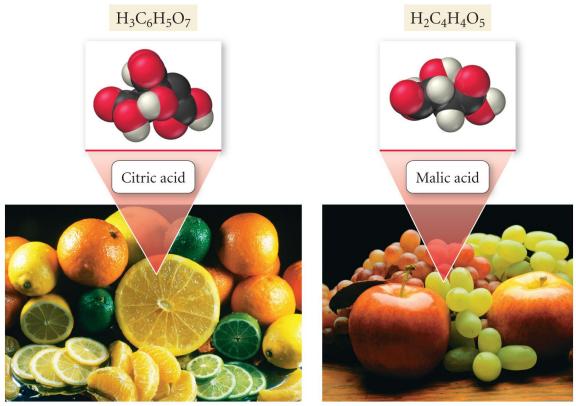




Copyright © 2008 Pearson Prentice Hall, Inc.










 $H - O - \bigvee_{O}^{H} = O$   $H - O - \bigvee_{O}^{H} = O$   $H - O - \bigvee_{N}^{H} - O$  H -

Copyright © 2008 Pearson Prentice Hall, Inc.



Copyright © 2008 Pearson Prentice Hall, Inc.

|               |           | Acid                           | Base             |         |               |
|---------------|-----------|--------------------------------|------------------|---------|---------------|
|               |           | HCl                            | Cl <sup>-</sup>  |         |               |
|               | Strong    | $H_2SO_4$                      | $HSO_4^-$        | Neutral |               |
|               | Strong    | HNO <sub>3</sub>               | $NO_3^-$         |         |               |
|               |           | $H_3O^+$                       | H <sub>2</sub> O |         |               |
|               |           | $HSO_4^-$                      | $SO_4^{2-}$      | Weak    |               |
|               |           | $H_2SO_3$                      | $HSO_3^-$        |         |               |
|               |           | H <sub>3</sub> PO <sub>4</sub> | $H_2PO_4^-$      |         |               |
|               |           | HF                             | $F^{-}$          |         | œ             |
| Acid Strength |           | $HC_2H_3O_2$                   | $C_2H_3O_2^-$    |         | Base Strength |
| Stre          |           | H <sub>2</sub> CO <sub>3</sub> | $HCO_3^-$        |         | Stre          |
| Acid          | Weak      | $H_2S$                         | HS <sup>-</sup>  |         | ngtł          |
|               |           | $HSO_3^-$                      | $SO_3^{2-}$      |         | _             |
|               |           | $H_2PO_4^-$                    | $HPO_4^{2-}$     |         |               |
|               |           | HCN                            | $CN^{-}$         |         |               |
|               |           | $\mathrm{NH_4}^+$              | NH <sub>3</sub>  |         |               |
|               |           | $HCO_3^-$                      | $CO_{3}^{2-}$    |         |               |
|               |           | $HPO_4^{2-}$                   | $PO_4^{3-}$      |         |               |
|               |           | H <sub>2</sub> O               | OH <sup>-</sup>  |         |               |
|               | Negligibl | HS <sup>-</sup>                | S <sup>2-</sup>  | Strong  |               |
|               |           | OH <sup>-</sup>                | O <sup>2-</sup>  |         |               |