Acid - Base Equilibria 2

| Reading: | Ch 15 sections $8-12 \quad$ Homework: |
| :--- | :--- | | Chapter 15: 41, 57, 61*, 63, 65*, 67*, |
| :--- |
| $73^{*}, 85,87 *, 89,91$ |,

* = 'important' homework question

Weak Acids

Review / Discussion: What is 'stronger' - HCl (aq) or vinegar (acetic acid)? What are the differences?

Because any weak acid and its respective dissociation products (H^{+}and conjugate base) are in equilibrium, 'equilibrium math' can be used to define K

Task: Determine an equilibrium expression (K) for the generic weak acid equilibrium:
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad+\mathrm{A}^{-}(\mathrm{aq})$
Weak Water Hydronium Conjugate
Acid ion

Base

Note: Since, in this case, K pertains to the dissociation of a weak acid only, it is called the acid dissociation constant and assigned a suitable subscript:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}_{\text {weak }}^{-}\right]}{\left[\mathrm{HA}_{\text {weak }}\right]}
$$

Discussion: Will strong acids (like HCl) have large or small values for K_{a} ? Will weak acids (like acetic acid) have large or small values for K_{a} ?

Task: Complete the following table:

Acid	Type	Reaction with water	K_{a}
HCl	strong	$\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	${ }^{\prime} \infty^{\prime}$
HNO_{3}			
HF			6.8×10^{-4}
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ $($ acetic)			1.8×10^{-4}
HCN			4.9×10^{-10}

Discussion: Of all the weak acids listed above, which is the 'strongest', weakest? Why?

The Relationship Between K_{a} and $\mathbf{p H}$

Overview: Since any weak acid is in equilibrium, a modified I.C.E. method can be used to determine either $\mathbf{p H}$ or \mathbf{K}_{a}

Vanilla I.C.E., noted chemical philosopher

Worked Example: A sample of 0.10 M formic acid $\left(\mathrm{HCHO}_{2}\right)$ has a pH of 2.38. Determine K_{a} for formic acid and the $\%$ to which formic acid is dissociated.

Plan:

1. Find $\left[\mathrm{H}^{+}\right]$
2. Set up and solve an I.C.E. table in order to find the equilibrium concentrations of $\mathrm{HA}, \mathrm{H}^{+}, \mathrm{A}^{-}$. 'Insert and evaluate' to find K_{a}

3. Find $\%$ dissociation

Using K_{a} to find pH (the 'reverse' problem)
Question: What is the pH of $0.2 \mathrm{M} \mathrm{HCN}(\mathrm{aq})\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
Plan:

Execution:

IMPORTANT: The weak acid approximation: when $K_{a} \leq 10^{-3}$ $[\mathrm{HA}]-\left[\mathrm{H}^{+}\right] \approx[\mathrm{HA}]$

This greatly simplifies the I.C.E. method, which is usually not undertaken unless the above is true (would otherwise require a quadratic equation to be solved)

Group work: Skip ahead to the end of this handout and work through the first two practice exam problems

Weak Bases

Weak base problems are very similar to the I.C.E. weak acid examples, except that $\left[\mathrm{OH}^{-}\right]$and pOH (rather than $\left[\mathrm{H}^{+}\right]$and pH) are found initially

Generic Equilibrium:

$\underset{\text { Weak }}{\mathrm{B}(\mathrm{aq})}$
Weak base
:---
Acid
:---
Hydroxide
ion

For ammonia dissolved in water:
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Task: Determine K for the above ammonia equilibrium

Note: Since, in this case, K pertains to the dissociation of a weak base only, it is called the base dissociation constant and assigned a suitable subscript:

Task: Complete the following table:

Base	Type	Reaction with water	K_{a}
NaOH	strong	$\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	${ }^{\prime} \infty^{\prime}$
KOH			
NH_{3}			1.8×10^{-5}
HS^{-}			1.8×10^{-7}
$\mathrm{CO}_{3}{ }^{2-}$			1.8×10^{-4}

Discussion: Of all the weak bases listed above, which is the 'strongest', weakest? Why?

Example: Find $\left[\mathrm{OH}^{-}\right]$and pH for $0.15 \mathrm{M} \mathrm{NH}_{3}$ solution $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$
Plan:

Recall that [$\mathrm{OH}-]$ and pOH can be found initially, then pH can be determined via:

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

Execution:

Group Task: $\mathrm{An} \mathrm{NH}_{3}(\mathrm{aq})$ solution has a pH of 10.50 . What is $\left[\mathrm{NH}_{3}\right]$ in this solution?

The Relationship between K_{a} and K_{b}
Recall: All weak acids and bases are in equilibrium with their respective conjugates. Each will also have an equilibrium (K) expression, e.g.:
$\mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) ; \mathrm{K}_{\mathrm{a}}=$
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{\mathrm{b}}=$

'Equilibrium constant math' can be applied to the above pair of equations.

Task: Add the above equations and find an expression for K in terms of K_{a} and K_{b}. Do you notice something familiar?

π For any weak acid or weak base:

$$
K_{a} K_{b}=K_{w}=1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Also, since $\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$:

$$
\mathbf{p K} \mathbf{K}_{\mathrm{a}}+\mathbf{p} \mathbf{K}_{\mathbf{b}}=\mathbf{p} K_{\mathrm{w}}
$$

Quick Question: What is K_{a} for $\mathrm{NH}_{3}(\mathrm{aq})$?

Group work: Skip ahead to the last page of this handout and work through the practice exam problem 'Weak Base'

"What's the pH? "

Question 2 (25 points): Calculate the pH of each of the following solutions:

1. $0.015 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ (assume complete dissociation)
2. $0.015 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ (assume complete dissociation)
3. $0.015 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ (assume complete dissociation)
4. $0.015 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}), \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$

"Weak Acid"

Question 3 (25 points): A 0.200 M solution of a weak acid HA (aq) is 9.4% ionized (dissociated) at equilibrium. Use this information to calculate $\left[\mathrm{H}^{+}\right],[\mathrm{HA}]$ and K_{a} for HA .

"Weak Base"

Codeine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ is a weak organic base. A $5.0 \times 10^{-3} \mathrm{M}$ solution of codeine has a pH of 9.95 .

Question 4a (20 points): Calculate K_{b} for codeine.

Question 4b (5 points): Calculate pK_{a} for codeine.

Appendix:

A Weak Acid

When HF dissolves in water, only a fraction of the molecules ionize.

A Weak Base

NH_{3}

Acid Strength
Acid
Base

Strong	$\begin{gathered} \mathrm{Cl}^{-} \\ \mathrm{HSO}_{4}^{-} \\ \mathrm{NO}_{3}^{-} \end{gathered}$	Neutral
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	Weak
$\mathrm{HSO}_{4}{ }^{-}$	$\mathrm{SO}_{4}{ }^{2-}$	
$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HSO}_{3}{ }^{-}$	
$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	
HF	F^{-}	
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	
$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{HCO}_{3}{ }^{-}$	
Weak $\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	
$\mathrm{HSO}_{3}{ }^{-}$	$\mathrm{SO}_{3}{ }^{2-}$	
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\mathrm{HPO}_{4}{ }^{2-}$	
HCN	CN^{-}	
NH_{4}^{+}	NH_{3}	
$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	
$\mathrm{HPO}_{4}{ }^{2-}$	$\mathrm{PO}_{4}{ }^{3-}$	
$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	Strong
Negligible	S^{2-}	
	O^{2-}	

чłбиәдъS әseg

Acid	Formula	Structural Formula	Ionization Reaction	$K_{\text {a }}$
Chlorous acid	HClO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}=\mathrm{O}$	$\begin{aligned} & \mathrm{HClO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}_{2}^{-}{ }^{-}(a q) \end{aligned}$	1.1×10^{-2}
Nitrous acid	HNO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{N}=\mathrm{O}$	$\begin{aligned} & \mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-} \end{aligned}$	4.6×10^{-4}
Hydrofluoric acid	HF	H-F	$\begin{aligned} & \mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q) \end{aligned}$	3.5×10^{-4}
Formic acid	HCHO_{2}	$\begin{gathered} \\ \mathrm{H}-\mathrm{O}-\mathrm{C}-\mathrm{H} \end{gathered}$	$\begin{array}{r} \mathrm{HCHO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CHO}_{2}{ }^{-}(a q) \end{array}$	1.8×10^{-4}
Benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$		$\begin{array}{r} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q) \end{array}+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}{ }^{-}(a q)$	6.5×10^{-5}
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$		$\begin{aligned} & \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}-(a q) \end{aligned}$	1.8×10^{-5}
Hypochlorous acid	HClO	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}$	$\begin{aligned} & \mathrm{HClO}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \text { - } \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}^{-}(a q) \end{aligned}$	2.9×10^{-8}
Hydrocyanic acid	HCN	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	$\begin{aligned} & \mathrm{HCN}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CN}^{-}(a q) \end{aligned}$	4.9×10^{-10}
Phenol	$\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}$		$\begin{array}{r} \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(a q) \end{array}$	1.3×10^{-10}

TABLE 15.10 Common Polyprotic Acids and lonization Constants				
Name (Formula)	Structure	$K_{\mathrm{a}_{1}}$	$K_{\text {a }}$	$K_{\text {a }}$
Sulfuric Acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$		Strong	1.2×10^{-2}	
Oxalic Acid ($\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$)		6.0×10^{-2}	6.1×10^{-5}	
Sulfurous Acid ($\left.\mathrm{H}_{2} \mathrm{SO}_{3}\right)$		1.6×10^{-2}	6.4×10^{-8}	
Phosphoric Acid ($\mathrm{H}_{3} \mathrm{PO}_{4}$)		7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Citric Acid ($\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3}$)		7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Ascorbic Acid ($\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$)		8.0×10^{-5}	1.6×10^{-12}	
Carbonic Acid ($\left.\mathrm{H}_{2} \mathrm{CO}_{3}\right)$		4.3×10^{-7}	5.6×10^{-11}	

TABLE 15.8 Some Common Weak Bases

Weak Base	Ionization Reaction	K_{b}
Carbonate ion $\left(\mathrm{CO}_{3}{ }^{2-}\right)^{*}$	$\mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}(a q)+\mathrm{OH}^{-}(a q)$	1.8×10^{-4}
Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$	$\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$	4.4×10^{-4}
Ethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$	5.6×10^{-4}
Ammonia $\left(\mathrm{NH}_{3}\right)$	$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$	1.76×10^{-5}
Pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(a q)+0 \mathrm{H}^{-}(a q)$	1.7×10^{-9}
Bicarbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)^{*}$ (or hydrogen carbonate $)$	$\mathrm{HCO}_{3}{ }^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q)$	1.7×10^{-9}
Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$	3.9×10^{-10}

[^0]
[^0]: *The carbonate and bicarbonate ions must occur with a positively charged ion such as Na^{+}that serves to balance the charge but does not have any part in the ionization reaction. For example, it is the bicarbonate ion that makes sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ basic. We look more closely at ionic bases in Section 15.8.

