Acid - Base Equilibria 2

73*, 85, 87*, 89, 91	Reading:	Ch 15 sections 8 – 12	Homework:	Chapter 15: 41, 57, 61*, 63, 65*, 67*,
				73*, 85, 87*, 89, 91

* = 'important' homework question

Weak Acids

<u>Review / Discussion</u>: What is 'stronger' – HCl (aq) or vinegar (acetic acid)? What are the differences?

Because any weak acid and its respective dissociation products $(H^+$ and conjugate base) are in equilibrium, 'equilibrium math' can be used to define K

<u>Task</u>: Determine an equilibrium expression (K) for the generic weak acid equilibrium:

HA (aq)	+	$H_2O(l)$	\Leftrightarrow	H_3O^+ (aq)	+	A ⁻ (aq)
Weak		Water		Hydronium		Conjugate
Acid				ion		Base

<u>Note</u>: Since, in this case, K pertains to the dissociation of a weak acid only, it is called the *acid dissociation constant* and assigned a suitable subscript:

$$K_a = \frac{[H^+][A_{weak}]}{[HA_{weak}]}$$

<u>Discussion</u>: Will strong acids (like HCl) have large or small values for K_a ? Will weak acids (like acetic acid) have large or small values for K_a ?

<u>Task</u>: Complete the following table:

Acid	Туре	Reaction with water	Ka
HCl	strong	HCl (aq) \rightarrow H ⁺ (aq) + Cl ⁻ (aq)	'∞'
HNO ₃			
HF			6.8 x10 ⁻⁴
HC ₂ H ₃ O ₂ (acetic)			1.8 x10 ⁻⁴
HCN			4.9 x10 ⁻¹⁰

<u>Discussion</u>: Of all the weak acids listed above, which is the 'strongest', weakest? Why?

The Relationship Between K_a and pH

<u>Overview</u>: Since any weak acid is in equilibrium, a modified I.C.E. method can be used to determine *either* pH *or* K_a

Vanilla I.C.E., noted chemical philosopher

<u>Worked Example</u>: A sample of 0.10 M formic acid (HCHO₂) has a pH of 2.38. Determine K_a for formic acid and the % to which formic acid is dissociated.

<u>Plan</u>:

1. Find $[H^+]$

2. Set up and solve an I.C.E. table in order to find the equilibrium concentrations of HA, H^+ , A^- . 'Insert and evaluate' to find K_a

3. Find % dissociation

Using K_a to find pH (the 'reverse' problem)

<u>Question</u>: What is the pH of 0.2 M HCN (aq) $(K_a = 4.9 \times 10^{-10})$

<u>Plan</u>:

Execution:

<u>IMPORTANT</u>: The weak acid approximation: when $K_a \le 10^{-3}$

$[\mathbf{H}\mathbf{A}] - [\mathbf{H}^+] \approx [\mathbf{H}\mathbf{A}]$

This greatly simplifies the I.C.E. method, which is usually not undertaken unless the above is true (would otherwise require a quadratic equation to be solved)

<u>Group work</u>: Skip ahead to the end of this handout and work through the first two practice exam problems

Weak Bases

Generic Equilibrium:

B (aq)	+ $H_2O(l)$	HB(aq)	+ $OH^{-}(aq)$
Weak	Water	Conjugate	Hydroxide
base		Acid	ion

For ammonia dissolved in water:

 $NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$

Task: Determine K for the above ammonia equilibrium

<u>Note</u>: Since, in this case, K pertains to the dissociation of a weak base only, it is called the *base dissociation constant* and assigned a suitable subscript:

<u>Task</u>: Complete the following table:

Base	Туре	Reaction with water	Ka
NaOH	strong	NaOH (aq) \rightarrow Na ⁺ (aq) + OH ⁻ (aq)	'∞'
КОН			
NH ₃			1.8 x10 ⁻⁵
HS			1.8 x10 ⁻⁷
CO ₃ ²⁻			1.8 x10 ⁻⁴

<u>Discussion</u>: Of all the weak bases listed above, which is the 'strongest', weakest? Why?

<u>Example</u>: Find [OH⁻] and pH for 0.15 M NH₃ solution ($K_b = 1.8 \times 10^{-5}$)

<u>Plan</u>:

Recall that [OH-] and pOH can be found initially, then pH can be determined via: pH + pOH = 14

Execution:

<u>Group Task</u>: An NH_3 (aq) solution has a pH of 10.50. What is $[NH_3]$ in this solution?

The Relationship between Ka and Kb

<u>Recall</u>: All weak acids and bases are in equilibrium with their respective conjugates. Each will also have an equilibrium (K) expression, e.g.:

 $\mathrm{NH_4^+}(\mathrm{aq}) \rightarrow \mathrm{H^+}(\mathrm{aq}) + \mathrm{NH_3}(\mathrm{aq}); \ \mathrm{K_a} =$

 $NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq); K_b =$

'Equilibrium constant math' can be applied to the above pair of equations.

<u>Task</u>: Add the above equations and find an expression for K in terms of K_a and K_b . Do you notice something familiar?

For any weak acid or weak base: $K_aK_b = K_w = 1 \times 10^{-14} = [H^+][OH^-]$ Also, since $K_aK_b = K_w$: $pK_a + pK_b = pK_w$

<u>Quick Question</u>: What is K_a for NH₃ (aq)?

<u>Group work</u>: Skip ahead to the last page of this handout and work through the practice exam problem 'Weak Base'

"What's the pH?"

<u>Question 2</u> (25 points): Calculate the pH of each of the following solutions:

- 1. 0.015 M HCl (aq) (assume complete dissociation)
- 2. 0.015 M H₂SO₄ (aq) (assume complete dissociation)
- 3. 0.015 M NaOH (aq) (assume complete dissociation)

4. 0.015 M HC₂H₃O₂ (aq), $K_a = 1.8 \times 10^{-5}$

"Weak Acid"

<u>Question 3</u> (25 points): A 0.200 M solution of a weak acid HA (aq) is 9.4 % ionized (dissociated) at equilibrium. Use this information to calculate $[H^+]$, [HA] and K_a for HA.

"Weak Base"

Codeine ($C_{18}H_{21}NO_3$) is a weak organic base. A 5.0 x 10⁻³ M solution of codeine has a pH of 9.95.

Question 4a (20 points): Calculate K_b for codeine.

<u>Question 4b</u> (5 points): Calculate pK_a for codeine.

Appendix:

A Weak Acid

When HF dissolves in water, only a fraction of the molecules ionize.

		Acid	Base		
1		HCl	Cl ⁻		
	Strong	H_2SO_4	HSO_4^-	Neutral	
	Strong	HNO ₃	NO_3^-		
		H_3O^+	H ₂ O		
		HSO_4^-	SO_4^{2-}		
		H_2SO_3	HSO_3^-		
		H ₃ PO ₄	$H_2PO_4^-$		
		HF	F^{-}		œ
Acid Strength		$HC_2H_3O_2$	$C_2H_3O_2^-$		Base Strength
Stre		H ₂ CO ₃	HCO_3^-	Weak	Stre
Acid	Weak	H_2S	HS ⁻		ngtł
		HSO_3^-	SO_3^{2-}		_
		$H_2PO_4^-$	HPO_4^{2-}		
		HCN	CN^{-}		
		$\mathrm{NH_4}^+$	NH ₃		
		HCO_3^{-}	CO_{3}^{2-}		
		HPO_4^{2-}	PO_4^{3-}		
		H ₂ O	OH ⁻		
	Negligibl	HS ⁻	S ²⁻	Strong	
		OH ⁻	O ²⁻		

TABLE 15.5 Acid Ionization Constants (Ka) for Some Monoprotic Weak Acids at 25°C					
Acid	Formula	Structural Formula	Ionization Reaction	Ka	
Chlorous acid	HClO ₂	H - O - Cl = O	$HClO_{2}(aq) + H_{2}O(l) =$ $H_{3}O^{+}(aq) + ClO_{2}^{-}(aq)$	1.1×10^{-2}	
Nitrous acid	HNO ₂	H-O-N=O	$HNO_{2}(aq) + H_{2}O(l) =$ $H_{3}O^{+}(aq) + NO_{2}^{-}(aq)$	4.6×10^{-4}	
Hydrofluoric acid	HF	H—F	$HF(aq) + H_2O(l) =$ $H_3O^+(aq) + F^-(aq)$	3.5×10^{-4}	
Formic acid	HCHO ₂	о Н-О-С-Н	$HCHO_2(aq) + H_2O(l) =$ $H_3O^+(aq) + CHO_2^-(aq)$	1.8×10^{-4}	
Benzoic acid	HC ₇ H ₅ O ₂	$\begin{array}{c} 0 \\ H-O-C-C \\ C-C \\ C-C \\ H-H \\ H \end{array} \begin{array}{c} H \\ C+C \\ H \\ H \end{array}$	$HC_7H_5O_2(aq) + H_2O(l)$ $H_3O^+(aq) + C_7H_5O_2^-(aq)$	6.5×10^{-5}	
Acetic acid	$HC_2H_3O_2$	О Н—О—С—СН ₃	$HC_2H_3O_2(aq) + H_2O(l)$ $H_3O^+(aq) + C_2H_3O_2^-(aq)$	1.8×10^{-5}	
Hypochlorous acid	HClO	H—O—Cl	$HClO(aq) + H_2O(l) $ $H_3O^+(aq) + ClO^-(aq)$	2.9×10^{-8}	
Hydrocyanic acid	HCN	H-C=N	$HCN(aq) + H_2O(l) =$ $H_3O^+(aq) + CN^-(aq)$	4.9×10^{-10}	
Phenol	HC ₆ H ₅ O	$\begin{array}{c} \overset{H}{_{C}=C}\overset{H}{_{C}=C}\\ \text{HO}-C & CH\\ \overset{C}{_{H}-C}\overset{H}{_{H}}\end{array}$	$HC_{6}H_{5}O(aq) + H_{2}O(l)$ $H_{3}O^{+}(aq) + C_{6}H_{5}O^{-}(aq)$	1.3×10^{-10}	

TABLE 15.10 Common F	Polyprotic Acids and I	onization Constants		
Name (Formula)	Structure	K _{a1}	K _{a2}	Ka33
Sulfuric Acid (H ₂ SO ₄)	٢	Strong	1.2×10^{-2}	
Oxalic Acid (H ₂ C ₂ O ₄)	2	$6.0 imes 10^{-2}$	6.1×10^{-5}	
Sulfurous Acid (H ₂ SO ₃)	%	1.6×10^{-2}	6.4×10^{-8}	
Phosphoric Acid (H ₃ PO ₄)	۵	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Citric Acid (H ₃ C ₆ H ₅ O ₃)		7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Ascorbic Acid $(H_2C_6H_6O_6)$	***	$8.0 imes 10^{-5}$	1.6×10^{-12}	
Carbonic Acid (H ₂ CO ₃)	•	4.3×10^{-7}	$5.6 imes 10^{-11}$	

TABLE 15.8	Some	Common	Weak	Bases	
-------------------	------	--------	------	-------	--

Weak Base	Ionization Reaction	Kb
Carbonate ion $(CO_3^{2-})^*$	$\operatorname{CO}_3^{2-}(aq) + \operatorname{H}_2\operatorname{O}(l) \Longrightarrow \operatorname{HCO}_3^-(aq) + \operatorname{OH}^-(aq)$	1.8×10^{-4}
Methylamine (CH ₃ NH ₂) Ethylamine (C ₂ H ₅ NH ₂)	$CH_{3}NH_{2}(aq) + H_{2}O(l) \Longrightarrow CH_{3}NH_{3}^{+}(aq) + OH^{-}(aq)$ $C_{2}H_{5}NH_{2}(aq) + H_{2}O(l) \Longrightarrow C_{2}H_{5}NH_{3}^{+}(aq) + OH^{-}(aq)$	4.4×10^{-4} 5.6×10^{-4}
Ammonia (NH ₃)	$\mathrm{NH}_3(aq) + \mathrm{H}_2\mathrm{O}(l) \Longrightarrow \mathrm{NH}_4^+(aq) + \mathrm{OH}^-(aq)$	1.76×10^{-5}
Pyridine (C ₅ H ₅ N)	$C_5H_5N(aq) + H_2O(l) \Longrightarrow C_5H_5NH^+(aq) + OH^-(aq)$	1.7×10^{-9}
Bicarbonate ion (HCO ₃ ⁻)* (or hydrogen carbonate)	$HCO_3^{-}(aq) + H_2O(l) \Longrightarrow H_2CO_3(aq) + OH^{-}(aq)$	1.7×10^{-9}
Aniline (C ₆ H ₅ NH ₂)	$C_6H_5NH_2(aq) + H_2O(l) \Longrightarrow C_6H_5NH_3^+(aq) + OH^-(aq)$	3.9×10^{-10}

^{*} The carbonate and bicarbonate ions must occur with a positively charged ion such as Na⁺ that serves to balance the charge but does not have any part in the ionization reaction. For example, it is the bicarbonate ion that makes sodium bicarbonate (NaHCO₃) basic. We look more closely at ionic bases in Section 15.8.