Name: _____

Instructor: Mills

Chemistry 102: 1st Practice Examination

Answer all five questions. Each question is worth 30 points. Please ensure you have all *five* pages of questions, as well as a formula sheet and a copy of the periodic table, *before* starting.

SHOW ALL WORK

Question	Score
1	
2	
3	
4	
5	
Total	

"Expressing reaction rates"

The reaction between hydrogen and nitrogen to form ammonia is known as the Haber process:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

<u>Question 1a</u> (5 points each): Express the rate of the above reaction in terms of changes in $[N_2]$ with time, $[H_2]$ with time, and $[NH_3]$ with time.

<u>Question 1b</u> (15 points): When $[H_2]$ is decreasing at 0.175 molL⁻¹s⁻¹, at what rate is $[NH_3]$ increasing?

"Initial rates"

<u>Question 2</u> (30 points): Consider the generic reaction:

$$A + B + C \rightarrow D$$

Assuming the above reaction was analyzed using the initial rate method at 25°C, use the data below to determine:

- 1. The order of reaction with respect to each reactant and the overall order of the reaction. Summarize your findings in the form of a complete rate equation.
- 2. The value of k at this temperature.
- 3. What is the rate of reaction when the concentrations of *each* reactant is 0.50 M,

Experiment	Initial concentrations (molL ⁻¹)		Initial rate	
	А	В	С	$(molL^{-1}s^{-1})$
1	0.10	0.10	0.50	1.5 x 10 ⁻⁶
2	0.20	0.10	0.50	$3.0 \ge 10^{-6}$
3	0.10	0.20	0.50	6.0 x 10 ⁻⁶
4	0.10	0.10	1.00	1.5 x 10 ⁻⁶

"Half - life"

<u>Question 3a</u> (15 points): The decomposition of N_2O_5 (g) is a first order process:

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

The concentration of N₂O₅ (g) may be monitored with time using a simple diode colorimeter. If, during such an experiment, *k* is determined to be $5.2 \times 10^{-4} \text{ s}^{-1}$, then what is the half-life of the reaction measured in minutes?

<u>Question 3b</u> (15 points): If, in the above experiment, an absorbance of 0.84 is recorded immediately prior to the commencement of N_2O_5 (g) decomposition (i.e. at t = 0), then what absorbance value will be recorded record after exactly one half-life has passed? Recall that Abs $\propto [N_2O_5]$

For the above reaction, what Abs value would be detected by the colorimeter after exactly three half-lives had passed?

"Arrhenius"

<u>Question 4</u> (30 points): The activation energy for a certain reaction is 65.7 kJ/mol. How many times faster will the reaction occur at 50°C than 0° C?

"Bloody Solution"

<u>Question 5</u> (30 points): Calculate the osmotic pressure of a solution containing 20.5 mg of hemoglobin in 15.0 mL of solution at 25° C. The molar mass of hemoglobin is 6.5 x 10^{4} g/mol.

Data sheet

<u>Molar volume</u> : $V_m = 22.41 \text{ L.mol}^{-1}$ at STP (0.00°C, 1.00 atm)	<u>Daltons law of partial pressures</u> : $P_{Tot} = P_a + P_b + P_c \dots$
<u>Ideal gas law</u> : PV= nRT	$\frac{\text{Beer's law}}{\text{A} = \log(I_0/I) = \epsilon bc}$
Combined gas law: $P_1V_1/T_1 = P_2V_2/T_2$	$R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$ = 8.315 Jmol ⁻¹ K ⁻¹
Boyle's Law: $P \propto 1/V$ (at fixed T and n)	d = m/v
<u>Charles's Law</u> : $P \propto T$ (at fixed V and n)	1.00 atm = 760 mmHg = 101.5 kPa
<u>Avagadro's Law</u> : $V = nV_m$	$\rho H_2 O = 1.00 \ gmL^{-1}$
$\frac{1^{\text{st}} \text{ order rate equations}}{\ln([A]_t/[A]_o) = -kt}$ $t_{1/2} = 0.693/k$	$\frac{2^{nd} \text{ order rate equations}}{1/[A]_t = kt + 1/[A]_o}$ $t_{1/2} = 1/k[A]_o$
<u>Osmotic pressure</u> : П= MRT	Arrhenius equation

$\ln \frac{k_2}{k_2}$ =	E_{a}	(1)	$\left[\frac{1}{2}\right]$
k_1	R	T_1	T ₂

Substance	Specific heat (Jg ⁻¹⁰ C ⁻¹)	Substance	$\Delta H^{o}_{f}(kJmol^{-1})$
Water, H ₂ O (l)	4.18	$H_2O(g)$	-241.8
Iron, Fe	0.450	H ₂ O (l)	-285.8
steel	0.455	$CH_4(g)$	-74.9
Graphite, C	0.711	$NH_{3}(g)$	-45.9
		HCN (g)	135