Name:		_	
Instructor:	Mills		

Chemistry 102: 2nd Practice Examination

Answer all five questions. Each question is worth 30 points. Please ensure you have all five pages of questions, as well as a formula sheet and a copy of the periodic table, before starting.

SHOW ALL WORK

Question	Score
1	
2	
3	
4	
5	
<u>Total</u>	

"Gibbs"

<u>Question 1</u> (30 points): Using the thermodynamic information given in the data sheet, calculate ΔG^{o} for the following reaction:

$$Fe_2O_{3~(s)}~+~6~HCl_{~(g)}~~\rightarrow~2~FeCl_{3~(s)}~+~3~H_2O_{~(g)}$$

"What's the pH?"

Question 2 (30 points): Calculate the pH of each of the following solutions:

- 1. 0.015 M HCl (aq) (assume complete dissociation)
- 2. 0.015 M H₂SO₄ (aq) (assume complete dissociation)
- 3. 0.015 M NaOH (aq) (assume complete dissociation)

4. $0.015 \text{ M HC}_2\text{H}_3\text{O}_2$ (aq), $K_a = 1.8 \text{ x } 10^{-5}$

"Weak Acid"

Question 3 (30 points): A 0.200 M solution of a weak acid HA (aq) is 9.4 % ionized (dissociated) at equilibrium. Use this information to calculate $[H^+]$, [HA] and K_a for HA.

"Weak Base"

Codeine ($C_{18}H_{21}NO_3$) is a weak organic base. A 5.0 x 10^{-3} M solution of codeine has a pH of 9.95.

Question 4a (30 points): Calculate K_b for codeine.

 $\underline{Question\ 4b}\ (5\ points) \hbox{:}\ Calculate\ pK_b\ for\ codeine.$

"Common Ion"

Question 5 (30 points): A solution contains $2.5 \times 10^{-4} \text{ M Ag}^+(\text{aq})$ and $1.7 \times 10^{-3} \text{ M}$ Pb²⁺(aq).

A. If NaI (aq) is added, will AgI ($K_{sp} = 8.3 \times 10^{-17}$) or PbI₂ ($K_{sp} = 7.9 \times 10^{-9}$) precipitate first?

B. Specify the concentration of Γ (aq) needed to begin precipitation of the material you determined would precipitate first in part A.

"REDOX"

Question 5a (10 points): State the oxidation state of the specified atom in each of the chemical species listed below:

$$Cr in Cr_2O_7^{2-}$$
 I in IO_3^{-}

<u>Question 5b</u> (20 points): Balance the following REDOX reaction. Assume acidic conditions.

$$Cr_2O_7^{2-}_{(aq)} + I_{(aq)}^- \rightarrow Cr_{(aq)}^{3+} + IO_3^{-}_{(aq)}$$

Data sheet

Molar volume:
$$V_m = 22.41 \text{ L.mol}^{-1}$$
 at STP

Daltons law of partial pressures:

$$P_{Tot} = P_a + P_b + P_c \dots$$

 $(0.00^{\circ}\text{C}, 1.00 \text{ atm})$

Beer's law

$$A = \log(I_o/I) = \epsilon bc$$

Combined gas law:
$$P_1V_1/T_1 = P_2V_2/T_2$$

$$R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$$

= 8.315 Jmol⁻¹K⁻¹

Boyle's Law:
$$P \propto 1/V$$
 (at fixed T and n)

d = m/v

Charles's Law:
$$P \propto T$$
 (at fixed V and n)

1.00 atm = 760 mmHg = 101.5 kPa

Avagadro's Law:
$$V = nV_m$$

$$\rho H_2 O = 1.00 \text{ gmL}^{-1}$$

1st order rate equations

$$\frac{1}{\ln([A]_t/[A]_o)} = -kt$$

$$1/[A]_t = kt + 1/[A]_o$$

2nd order rate equations

$$t_{1/2} = 0.693/k$$

$$t_{1/2} = 1/k[A]_o$$

<u>Arrhenius equation</u>

$$ln(k_2/k_1) = E_a(1/T_1-1/T_2) / R$$

Equilibrium constants:
$$K_p = K_c(RT)^{\Delta n}$$

$$K_w = [H^+][OH] = 1 \times 10^{-14}$$

$$K_{w} = [H'][OH] = 1 \times 10^{-1}$$

$$pH + pOH = 14$$

$$pH = -log [H^+]$$

$$K_aK_b=K_{\rm w}$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta H_{rxn} = \Delta H_f \text{ (products)} - \Delta H_f \text{ (reactants)}$$

Substance	S^{o} (Jmol ⁻¹ K ⁻¹)
$H_2O(g)$	188.83
Fe_2O_3 (s)	89.96
FeCl ₃ (s)	142.3
HCl (g)	186.69

Substance	$\Delta H^{o}_{f}(kJmol^{-1})$
$H_2O(g)$	- 241.8
$Fe_2O_3(s)$	- 822.16
$FeCl_3$ (s)	- 400.0
HCl (g)	- 92.30