Chemical Equilibria 1

<u>Reading</u>: Ch 14 sections 1 - 5 <u>Homework</u>: Chapter 14: 21*, 23, 25, 35*, 37, 39*

* = 'important' homework question

Background: Expressing Equilibria

Discussion: What is a *dynamic* chemical equilibrium?

Analogy: the Vancouver shoe sale

8:59 am: Before reaction starts

9:01 am: Reaction starts

9:10 am: Dynamic equilibrium established

Product(s) and reactant(s) have fixed molar ratios at equilibrium. Therefore:

Forward rate of reaction $\equiv Reverse$ rate of reaction for a system at equilibrium

11

<u>Example</u>: The Equilibrium between N_2O_4 (g) and the 'smog gas' NO_2 (g) - see slide.

Equilibrium Position

<u>Discussion</u>: Based on the slide (as well as the above picture of the LA skyline), would you say that the equilibrium between N_2O_4 (g) and NO_2 (g) favors reactants or products at room temperature? Why?

 $N_2O_4(g) \Leftrightarrow 2 NO_2(g)$

Typically:K > 1 for equilibria that favor product(s)K < 1 for equilibria that favor reactant(s)

Quantitative Determination of the Equilibrium Constant, K

<u>Task</u>: Based on the basic definition of K, discussed above, *estimate** the value of K for the N_2O_4 (g) $\Leftrightarrow 2 NO_2$ (g) equilibrium via inspection of the supplied slide. What about the shoe store?

<u>Task</u>: Use the preceding math in conjunction with the slide to *determine** a more accurate value of K for the $N_2O_4(g) \Leftrightarrow 2 NO_2(g)$ equilibrium.

<u>Note</u>: For gas phase reactions, [conc] \propto p. Therefore, partial pressures (e.g. p_{NO2}) may be used in place of [conc] expressions for gas phase processes. See appendix for more examples.

Task: Write an expression for K, involving partial pressures, for:

 $N_2O_4(g) \Leftrightarrow 2 NO_2(g)$

<u>Note</u>: It is possible to mix 'n match [conc] and *p* units in a single equilibrium expression – this is an example of a *heterogeneous* equilibrium

Pure solids and/or liquids do NOT have a defined concentrations or partial pressures, so do NOT appear in equilibrium expressions

Example: Write an equilibrium expression for:

```
CaCO_{3}(s) + 2 HCl (g) \iff CaCl_{2}(s) + H_{2}O (l) + CO_{2} (g)
```

<u>Example</u>: A mixture of H_2 (g) and N_2 (g) was allowed to come to equilibrium at 472 °C:

$$N_2(g) + 3 H_2(g) \iff 2 NH_3(g)$$

Find K for this system, assuming the partial pressures or each reactant were found to be $p_{N2} = 2.46$ atm, $p_{H2} = 7.38$ atm, and be $p_{NH3} = 0.166$ atm respectively.

If K is known for a chemical process, then the [conc] and/or partial pressures of aqueous and/or gas phase species, respectively, involved in a chemical process may be determined.

Example: At 21.8°C, K for the following equilibrium is known to be 7.0×10^{-2} .

 NH_4HS (s) $\Leftrightarrow NH_3$ (g) + H_2S (g)

Calculate the equilibrium partial pressures of NH_3 (g) and H_2S (g) if a solid sample of NH_4HS is placed in a closed vessel and allowed to decompose until equilibrium is attained. Is this a hetero- or homogeneous equilibrium? See appendix for another example. The Feasibility of a Reaction – what does the value of K really mean?

<u>Discussion</u>: If K is very *large*, do reactants or products dominate at equilibrium? If K is very *small*, do reactants or products dominate at equilibrium? <u>Hint</u>: Recall the basic definition of K.

If K is *large*, the equilibrium is said to lie to the *right*. If K is *small*, the equilibrium is said to lie to the *left*.

Extreme Cases - 'complete' and 'incomplete' reactions

If $K \ge 10^6$, a reaction is said to be 'complete'

If $K \le 10^{-6}$, a reaction is said to be 'incomplete'

<u>Discussion</u>: Given the above information, is there such a thing as an entirely complete or incomplete chemical reaction??

$$K = \frac{[\text{NO}]^2}{[\text{N}_2][\text{O}_2]} = \text{small number}$$

A Heterogeneous Equilibrium

Copyright © 2008 Pearson Prentice Hall, Inc.