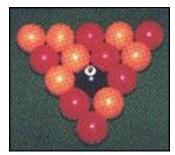
Chemical Thermodynamics

<u>Reading</u>: Ch 17, sections 1 – 9 <u>Homework</u>: Chapter 17: 27, 31, 37*, 39*, 41*, 43, 47, 49, 51*, 55, 57*, 59, 63, 71

* = 'important' homework question

The Second Law of Thermodynamics - ENTROPY

"We don't like the idea of an increasingly disordered universe"


Key Idea and Definitions

The ENTROPY (note spelling), *S*, of the Universe increases ($\Delta S = +ve$) for a *spontaneous* process.

<u>Discussion</u>: What is a spontaneous process? 'Being spontaneous' is a somewhat accurate analogy...

Entropy (S): A measure of the amount of disorder in a system, Symbol S.

<u>Discussion</u>: What is *disorder*? Example, which has a higher degree of disorder (entropy) - a rack of pool balls before or after a break off??

Before

After

Entropy:

Entropy:

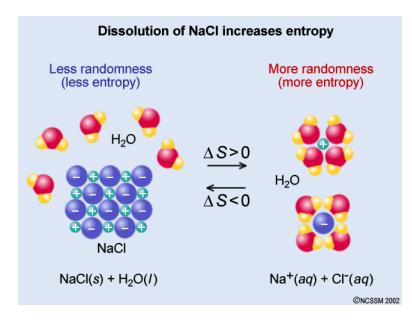
$$\Rightarrow \Delta S = S_{(final)} - S_{(initial)} =$$

<u>Examples</u>: Based on Entropy arguments alone, would you expect the following processes to be spontaneous (i.e. experience an increase in entropy upon completion)? Briefly explain.

1. H_2CO_3 (aq) $\rightarrow H_2O$ (l) + CO_2 (g)

Observation

2. The air drying of washing up or clothes on a washing line


 $H_2O(l) \rightarrow H_2O(g)$

"The 2nd law will <u>Observation</u>

take care of it"...

3. NaCl (s) \rightarrow NaCl (aq)

Observation (see more detailed figure below)

4. The diffusion of any gas

Observation

<u>Task</u>: List at least three entropy driven processes (see appendix for examples)

Just like with Enthalpy (H), each material has an inherent amount of entropy. All *S* values are measured in J/mol K and are always positive. The magnitude of S indicates the relative amount of disorder for the material.

Standard Entropy values can be used (in a similar way to ΔH_f values) to find ΔS for any reaction. See Appendix.

Example: Calculate ΔS for the following reaction:

 $\operatorname{CCl}_4(l) \rightarrow \operatorname{CCl}_4(g); \Delta S =$

Given: CCl_4 (g), S = 309.4 J/molK CCl_4 (l), S = 214.4 J/molK

What conclusion can you make regarding the evaporation of CCl_4 (1)?

Math considerations - the second law of thermodynamics

Entropy is temperature dependant – the hotter a material is the more entropy it has (standard entropies form Appendix C are calculated at 25° C, 1.00 atm). This fact is conveyed in the formal mathematical description of the 2^{nd} law:

$$\mathbf{S} = \frac{\mathbf{q}_{rev}}{\mathbf{T}}$$

For chemical systems that do not do 'PV' work, $\Delta H = q$ (first law), therefore:

$$S = \frac{\Delta H}{T}$$

<u>Wrap up Discussion</u>: If all spontaneous processes result in an increase in entropy, how can processes that result in a decrease in entropy (such as the freezing of water) for a material ever occur??

Gibbs Free Energy

Image: Observe the second systemGibbs free energy (ΔG) for a reaction relates ΔH and ΔS for that reaction.Simply, the mathematical sign of ΔG , determined via the Gibbs equation, determines if a reaction will ever work (is spontaneous); will never work (in non-spontaneous) or at equilibrium.Spontaneous: $\Delta G < 0$ Non-spontaneous: $\Delta G > 0$ Equilibrium: $\Delta G = 0$

Gibbs Free Energy Equation:

T

$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \ \Delta \mathbf{S}$

The sign of ΔG (and, therefore, if a reaction is spontaneous) depends on the signs of ΔH and ΔS . See appendix.

<u>Task</u>: Complete the following table / determine the sign of ΔG

ΔΗ	ΔS	ΔG	spontaneous
-ve	-ve		
-ve	+ve		
+ve	-ve		
+ve	+ve		

As with ΔH and ΔS , ΔG is a state function.

 ΔG values follow the same 'state function' math rules as the ΔH and ΔS , so can be determined from these quantities. Slides

<u>'Huge' worked Example</u>: The thermite reaction is used to weld railway tracks:

$$Fe_2O_3(s) + 2 Al(s) \rightarrow 2 Fe(s) + Al_2O_3(s)$$

Based on the below data, determine if this reaction is spontaneous at 25°C and quote the value of ΔG in kJ/mol

Given:

$\Delta H_{f} Fe_{2}O_{3}(s) = -822.16 \text{ kJ/mol}$
$\Delta H_{f} Al_{2}O_{3}(s) = -1669.9 \text{ kJ/mol}$

S Fe₂O₃ (s) = +89.96 J/molK S Al₂O₃ (s) =+51.00 J/molK S Fe (s) = +27.15 J/molK S Al (s) = +25.32 J/molK

<u>Plan</u>: Find ΔH , ΔS , and then find ΔG

Free Energy and Equilibrium

<u>Recall</u>: For and equilibrium, $\Delta G = 0$. In terms of the equilibrium constant K and other variables

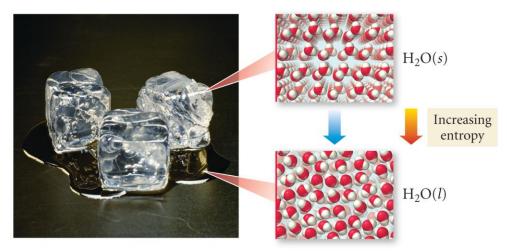
$\Delta \mathbf{G} = -\mathbf{R}\mathbf{T}\,\mathbf{ln}\mathbf{K}$

Where: K = equilibrium constant (no units) $\Delta G = Gibbs Free energy (kJ/mol)$ R = 8.314 J/molKT = temperature in Kelvin

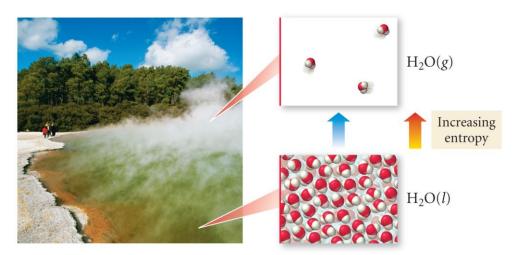
<u>Task</u>: Rearrange the above equation to find an expression for K in terms of ΔG

<u>Group activity</u>: Use the standard ΔG values in appendicies to find K at 25°C for:

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

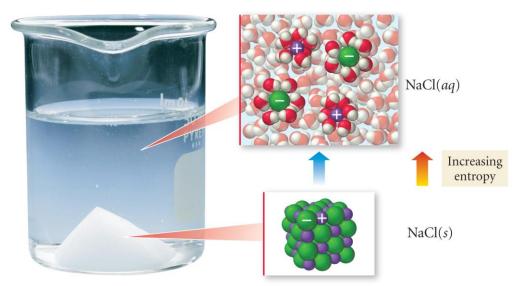

<u>Plan</u>: Find ΔG , find K

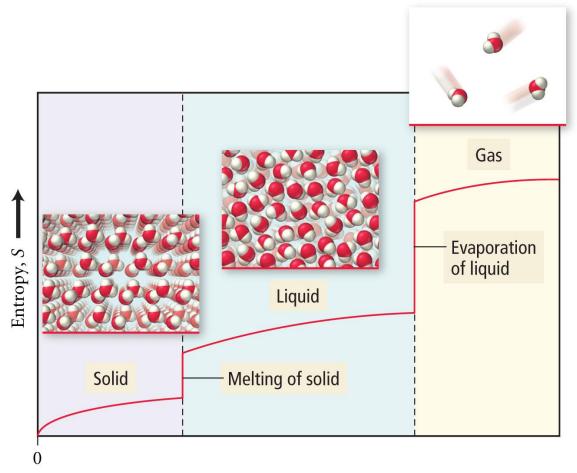
"Gibbs"


<u>Question 1</u> (25 points): Using the thermodynamic information given in the data sheet, calculate ΔG° for the following reaction:

$$\operatorname{Fe_2O_3}_{(s)}$$
 + 6 HCl $_{(g)}$ \rightarrow 2 FeCl_{3 (s)} + 3 H₂O $_{(g)}$

Appendix


Copyright © 2008 Pearson Prentice Hall, Inc.


Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

 $Temperature \ (K)$ Copyright © 2008 Pearson Prentice Hall, Inc.

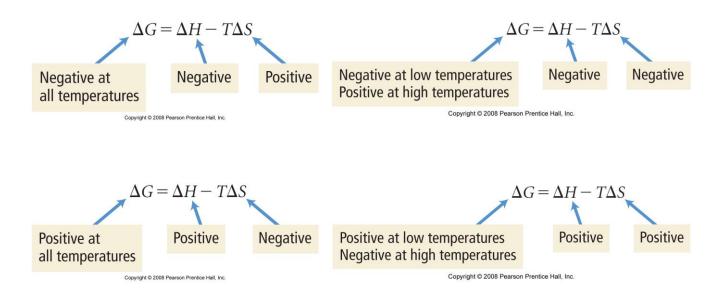
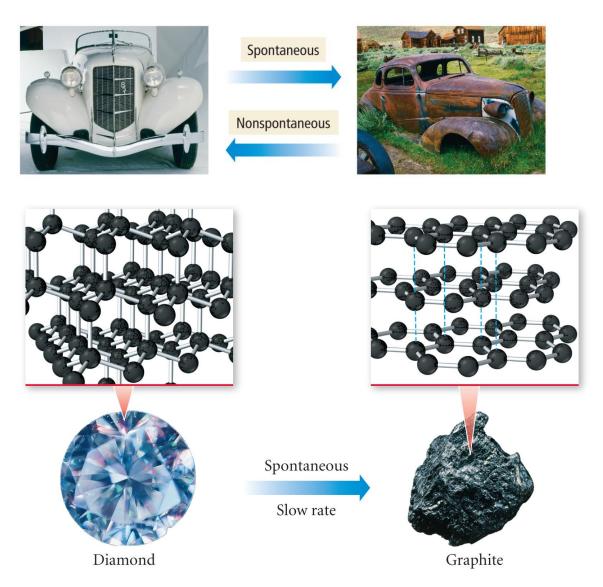
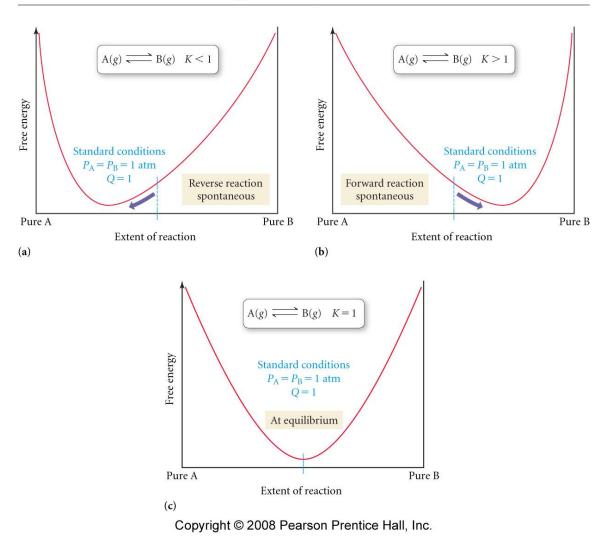

TABLE 17.2 Standard World Entropy Values (5) for Selected Substances at 290 K					
Substance	S° (J/mol \cdot K)	Substance	S° (J/mol \cdot K)	Substance	S° (J/mol \cdot K)
Gases $H_2(g)$ $Ar(g)$ $CH_4(g)$ $H_2O(g)$ $N_2(g)$ $NH_3(g)$ $F_2(g)$ $O_2(g)$ $Cl_2(g)$	130.7 154.8 186.3 188.8 191.6 192.8 202.8 205.2 223.1	Liquids $H_2O(l)$ $CH_3OH(l)$ $Br_2(l)$ $C_6H_6(l)$	70.0 126.8 152.2 173.4	Solids MgO(s) Fe(s) Li(s) Cu(s) Na(s) K(s) NaCl(s) CaCO ₃ (s) FeCl ₃ (s)	27.0 27.3 29.1 41.6 51.3 64.7 72.1 91.7 142.3
$C_2H_4(g)$	219.3				

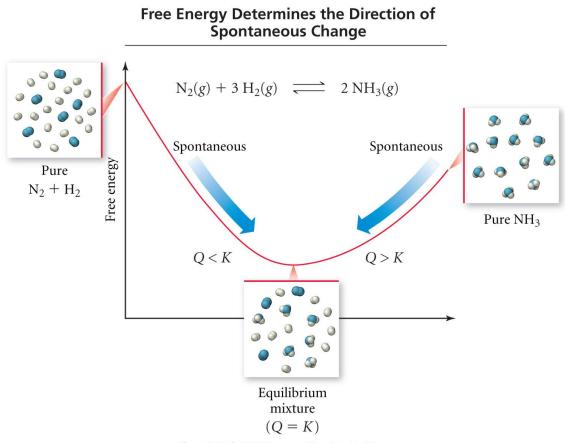
TABLE 17.2	Standard Mola	Entropy Values	(S°)	for Selected Substances at 298 K
-------------------	----------------------	----------------	---------------	----------------------------------

Copyright © 2008 Pearson Prentice Hall, Inc.


TABLE 17.1 The Effect of ΔH , ΔS , and T on Spontaneity						
ΔH	ΔS	Low Temperature	High Temperature	Example		
_	+	Spontaneous ($\Delta G < 0$)	Spontaneous ($\Delta G < 0$)	$2 \operatorname{N}_2 \operatorname{O}(g) \longrightarrow 2 \operatorname{N}_2(g) + \operatorname{O}_2(g)$		
+	-	Nonspontaneous ($\Delta G > 0$)	Nonspontaneous ($\Delta G > 0$)	$3 O_2(g) \longrightarrow 2 O_3(g)$		
_	-	Spontaneous ($\Delta G < 0$)	Nonspontaneous ($\Delta G > 0$)	$H_2O(l) \longrightarrow H_2O(s)$		
+	+	Nonspontaneous ($\Delta G > 0$)	Spontaneous ($\Delta G < 0$)	$H_2O(l) \longrightarrow H_2O(g)$		

Copyright © 2008 Pearson Prentice Hall, Inc.




TABLE 17.3Standard Molar Free Energies of Formation ($\Delta G_{\rm f}^{\circ}$) for Selected Substances at 298 K					
Substance	$\Delta {\it G}_{ m f}^{ m o}$ (kJ/mol)	Substance	$\Delta {\it G}_{ m f}^{ m o}$ (kJ/mol)		
H ₂ (g) O ₂ (g) N ₂ (g) C(s, graphite) C(s, diamond)	0 0 0 2.900	$CH_4(g)$ $H_2O(g)$ $H_2O(l)$ $NH_3(g)$ $NO(g)$	-50.5 -228.6 -237.1 -16.4 +87.6		
CO(g) $CO_2(g)$	-137.2 -394.4	$NO_2(g)$ NaCl(s)	+51.3 -384.1		

Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.